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Abstract

Capital allocation techniques are of central importance in portfolio manage-
ment and risk-based performance measurement. In this paper we propose an
axiom system for capital allocation and analyze its satisfiability and complete-
ness: it is shown that for a given risk measure ρ there exists a capital allocation
Λρ which satisfies the main axioms if and only if ρ is sub-additive and positively
homogeneous. Furthermore, it is proved that the axiom system uniquely speci-
fies Λρ. We apply the axiomatization to the most popular risk measures in the
finance industry in order to derive explicit capital allocation formulae for these
measures.

Key Words: capital allocation, risk measure, expected shortfall, value-at-
risk, Hahn-Banach theorem

1 Introduction

The application of risk measures in portfolio management or performance measure-
ment requires the allocation of risk capital either to subportfolios or to business units.
More formally, assume that a risk measure ρ has been fixed and let X be a portfolio
which consists of subportfolios X1, . . . , Xm, i.e. X = X1 + . . . + Xm. The objective
is to distribute the risk capital k := ρ(X) of the portfolio X to its subportfolios, i.e.
to compute risk contributions k1, . . . , km of X1, . . . , Xm with k = k1 + . . . + km.

Allocation problems have been extensively studied in game theory. In recent years
the banking industry recognized the importance of allocation techniques. Theoretical
and practical aspects of different allocation schemes have been analyzed in a number
of papers, for instance in Garman (1996, 1997), Hallerbach (1999), Schmock and
Straumann (1999), Artzner et al. (1999b), Delbaen (2000), Overbeck (2000), Denault
(2001), Tasche (2000, 2002), Fischer (2003) and Urban et al. (2003).

∗Address correspondence to M. Kalkbrener, Deutsche Bank AG, Credit Risk Management, Risk
Analytics & Instruments, Taunusanlage 12, D-60325 Frankfurt.

The views expressed in this paper are those of the author and do not necessarily reflect the position
of Deutsche Bank AG.
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In this paper we propose a simple axiomatization of capital allocation. It is based
on the assumption that the capital allocated to subportfolio Xi only depends on Xi

and X but not on the decomposition of the rest

X −Xi =
∑
j 6=i

Xj

of the portfolio. Hence, a capital allocation Λ can be considered as a function of
two arguments, the first being the subportfolio Xi and the second the portfolio
X. Λ is called a capital allocation with respect to a risk measure ρ if it satisfies
Λ(X, X) = ρ(X), i.e. the capital allocated to X (considered as stand-alone portfolio)
is the risk capital ρ(X) of X. We propose a system of three axioms for capital
allocation: linear aggregation, diversification and continuity at X. The first ensures
that the sum of the risk capital of the subportfolios equals the risk capital of the
portfolio, the second formalizes diversification and the last ensures that small changes
to a portfolio X only have a limited effect on the risk capital of its subportfolios.

Despite its simplicity this axiom system uniquely characterizes capital allocation,
i.e. for a given risk measure there exists at most one capital allocation which sat-
isfies the axiom system. We show that the uniquely determined risk capital of Xi

considered as subportfolio of X is the derivative of the underlying risk measure ρ
at X in direction of subportfolio Xi, in agreement with results in the papers cited
above.

After characterizing capital allocation schemes we turn to their existence. By
applying the Hahn-Banach theorem we show that for a given risk measure ρ there
exists a capital allocation Λρ which satisfies the linear aggregation and diversification
axioms if and only if ρ is sub-additive and positively homogeneous, i.e. ρ satisfies

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) and ρ(aX) = aρ(X) for a ≥ 0.

Furthermore, we prove that the existence of all directional derivatives of ρ at a
portfolio X is a necessary and sufficient condition for Λρ being continuous at X.

Value-at-risk, standard deviations and expected shortfall are the most popular
risk measures in the finance industry. The development of sound capital allocation
techniques for these measures is an important practical problem. In contrast to
value-at-risk, expected shortfall and risk measures based on standard deviations are
sub-additive and positively homogeneous. For these two classes we derive explicit
formulae which specify linear, diversifying capital allocations. We finish the paper
with a discussion of different allocation schemes for value-at-risk.

2 An axiom system for capital allocation

In this paper let (Ω,A, P) be a probability space, L0 the space of all equivalence
classes of real valued random variables on Ω and V a subspace of the vector space
L0.
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We will identify each portfolio X with its loss function, i.e. X is an element of
V and X(ω) specifies the loss of X at a future date in state ω ∈ Ω. We assume that
a function ρ : V → R has been defined. For each X ∈ V , ρ(X) specifies the risk
capital associated with portfolio X. At this point we do not require that the risk
measure ρ has specific properties.

Let X ∈ V be a portfolio which consists of subportfolios X1, . . . , Xm ∈ V , i.e.
X = X1 + . . .+Xm. We want to distribute the risk capital of the portfolio k = ρ(X)
to its subportfolios. Denote the amount of capital allocated to subportfolio Xi by
ki. The proposed axiomatization is based on the assumption that the capital ki only
depends on Xi and X but not on the decomposition of the rest

X −Xi =
∑
j 6=i

Xj .

More formally, let X = Y1 + . . . + Yn be another decomposition of X with capital
allocation l1, . . . , ln. If Xi = Yj for indices i, j then ki = lj .

Based on the above assumption a capital allocation Λ can be defined as a function
from V × V to R. Its meaning is that Λ(Xi, X) defines the capital allocated to Xi

if Xi is considered a subportfolio of portfolio X. Λ is called a capital allocation
with respect to the risk measure ρ if it satisfies Λ(X, X) = ρ(X), i.e. the capital
allocated to X (considered as stand-alone portfolio) is the risk capital ρ(X) of X.
Furthermore, we propose the following axioms for Λ:

1. Linear aggregation: The risk capital of the portfolio equals the sum of the
(contributory) risk capital of its subportfolios. More formally, let X1, . . . , Xm ∈
V and a1, . . . , am ∈ R and define X = a1X1 + . . . + amXm. Then

ρ(X) = Λ(X, X) =
m∑

i=1

aiΛ(Xi, X).

2. Diversification: The risk capital Λ(X, Y ) of X ∈ V considered as a sub-
portfolio of Y ∈ V does not exceed the risk capital ρ(X) = Λ(X, X) of X
considered as stand-alone portfolio.

3. Continuity: Small changes to the portfolio only have a limited effect on the
risk capital of its subportfolios. More formally, the risk capital Λ(X, Y +εX) of
X in Y +εX converges to the risk capital Λ(X, Y ) of X in Y if ε ∈ R converges
to 0.

The following definition formalizes these principles (see Denault (2001) for an alter-
native axiomatic approach).

DEFINITION 2.1. Let ρ : V → R. A capital allocation (with respect to ρ) is a
function Λ from V × V to R such that for every X ∈ V

Λ(X, X) = ρ(X).
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The capital allocation Λ is called

linear: Λ(aX + bY, Z) = aΛ(X, Z) + bΛ(Y, Z) ∀a, b ∈ R, X, Y, Z ∈ V,
diversifying: Λ(X, Y ) ≤ Λ(X, X) ∀X, Y ∈ V.

Let Y ∈ V . The capital allocation Λ is called

continuous at Y: lim
ε→0

Λ(X, Y + εX) = Λ(X, Y ) ∀X ∈ V.

We will now analyze this axiomatization. In particular, we will deal with the
following questions:

1. Completeness: For a given ρ, does the axiom system uniquely determine
capital allocations? If not, does it make sense to add further axioms to the
system?

2. Existence: What are necessary and sufficient properties of risk measures to
ensure existence of capital allocations which satisfy the axioms?

3. Allocation formulae: Can we explicitly specify capital allocations for par-
ticular classes of risk measures?

3 Completeness of the axiom system

It is interesting that this simple axiom system is already complete: if a linear, di-
versifying capital allocation is continuous at a portfolio Y ∈ V then the risk capital
Λ(X, Y ) of an arbitrary subportfolio X is uniquely determined. It is the derivative
of the underlying risk measure ρ at Y in direction of subportfolio X.

THEOREM 3.1. Let Λ be a linear, diversifying capital allocation with respect to
ρ. If Λ is continuous at Y ∈ V then for all X ∈ V

Λ(X, Y ) = lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

.

Proof. Let ε, ε̄ ∈ R. Since Λ is linear and diversifying,

ρ(Y + ε̄X) ≥ Λ(Y + ε̄X, Y + εX)
= Λ((Y + εX) + (ε̄− ε)X, Y + εX)
= ρ(Y + εX) + (ε̄− ε)Λ(X, Y + εX).

If ε < ε̄ then

(3.1) Λ(X, Y + εX) ≤ ρ(Y + ε̄X)− ρ(Y + εX)
ε̄− ε

≤ Λ(X, Y + ε̄X).
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Since Λ is continuous at Y ,

Λ(X, Y ) = lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

. 2

4 Existence of capital allocations

DEFINITION 4.1. The risk measure ρ : V → R is called

positively homogeneous: ρ(aX) = aρ(X) ∀a ≥ 0, X ∈ V,
sub-additive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) ∀X, Y ∈ V.

In this section we will show that there exists a linear, diversifying capital alloca-
tion Λ with respect to ρ if and only if ρ is positively homogeneous and sub-additive.
The proof of this theorem is an application of one of the fundamental results in
functional analysis, the Hahn-Banach theorem (see, for instance, Theorem II.3.10 in
Dunford and Schwartz (1958)).1

First we will show that ρ can be represented in the form

ρ(X) = max{h(X) | h ∈ H},

where H consists of real valued, linear functions on V .

DEFINITION 4.2. Let V ∗ be the set of real valued, linear functions on V and

Hρ := {h ∈ V ∗ | h(X) ≤ ρ(X) for all X ∈ V }.

THEOREM 4.1. Let ρ : V → R be a positively homogeneous and sub-additive
risk measure. Then

(4.1) ρ(X) = max{h(X) | h ∈ Hρ}

for all X ∈ V .

Proof. Let Y ∈ V and VY the linear subspace of V generated by Y . Define fY on
VY by fY (aY ) := a · ρ(Y ) for every real number a. Since ρ(Y ) + ρ(−Y ) ≥ ρ(0) = 0
it follows that ρ(−Y ) ≥ −ρ(Y ). Since ρ is positively homogeneous,

fY (aY ) = ρ(aY ), fY (−aY ) = −a · ρ(Y ) ≤ a · ρ(−Y ) = ρ(−aY ) for a ≥ 0.

1The results in this section can also be shown in the framework of convex analysis. More precisely,
since every sub-additive and positively homogeneous function ρ is convex the results can be derived
from theorems on subgradients of convex functions.
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Hence, fY ≤ ρ on VY . It follows from the Hahn-Banach theorem that there exists
an hY ∈ V ∗ such that

hY (X) = fY (X) for all X ∈ VY , hY (X) ≤ ρ(X) for all X ∈ V.

Hence, hY ∈ Hρ with hY (Y ) = ρ(Y ) and (4.1) is proved. 2

We can now define the following capital allocation with respect to ρ.

DEFINITION 4.3. Let ρ be a positively homogeneous and sub-additive risk
measure. For every Y ∈ V let hY be an element of Hρ with hY (Y ) = ρ(Y ) and
define for every X, Y ∈ V

(4.2) Λρ(X, Y ) := hY (X).

The existence of an element hY of Hρ with hY (Y ) = ρ(Y ) has been shown in the
proof of Theorem 4.1. Note, however, that hY is not necessarily unique: there exists
a unique hY ∈ Hρ with hY (Y ) = ρ(Y ) if and only if the directional derivative

lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

exists for every X ∈ V (see Theorem 4.3).
In the examples in section 5, the functions hY are not only linear but also con-

tinuous. The reason is that in these examples the linear space V is equipped with a
norm ‖.‖ and ρ is bounded, i.e.

sup
‖X‖≤1

|ρ(X)| < ∞.

Therefore, hY ≤ ρ implies that Λρ(., Y ) = hY is bounded and therefore continuous
with respect to the topology induced by the norm (see, for instance, Lemma II.3.4
in Dunford and Schwartz (1958)). Hence, the set V ∗ of real valued, linear functions
on V (Definition 4.2) can be replaced by the topological dual of V in the examples.

THEOREM 4.2.

(a) If there exists a linear, diversifying capital allocation Λ with respect to ρ then ρ
is positively homogeneous and sub-additive.
(b) If ρ is positively homogeneous and sub-additive then Λρ is a linear, diversifying
capital allocation with respect to ρ.

Proof. (a) Note that for a ≥ 0

aΛ(X, X) = Λ(aX,X) ≤ Λ(aX, aX) = aΛ(X, aX) ≤ aΛ(X, X).
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Hence,
aρ(X) = aΛ(X, X) = Λ(aX, aX) = ρ(aX)

and ρ is positively homogeneous. By

ρ(X + Y ) = Λ(X, X + Y ) + Λ(Y, X + Y ) ≤ Λ(X, X) + Λ(Y, Y ) = ρ(X) + ρ(Y ),

ρ is sub-additive.

(b) It immediately follows from (4.1) and (4.2) that Λρ is a linear, diversifying capital
allocation with respect to ρ. 2

If ρ is positively homogeneous and sub-additive then Λρ is a linear, diversifying
capital allocation with respect to ρ. We will now analyze under which conditions the
capital allocation Λρ satisfies the continuity axiom

Λρ is continuous at Y ∈ V : lim
ε→0

Λρ(X, Y + εX) = Λρ(X, Y ) ∀X ∈ V.

First of all, it follows from Theorems 3.1 and 4.2 that the existence of all directional
(or Gateaux) derivatives of ρ at Y ∈ V is a necessary condition for the continuity
of Λρ at Y . The following theorem shows that this condition is also sufficient. A
third equivalent condition is the uniqueness of h ∈ Hρ with h(Y ) = ρ(Y ) (which is
a well-known characterization of the differentiability of a convex function).

THEOREM 4.3. Let ρ be a positively homogeneous and sub-additive risk measure
and Y ∈ V . Then the following three conditions are equivalent:
(a) Λρ is continuous at Y , i.e. for all X ∈ V

lim
ε→0

Λρ(X, Y + εX) = Λρ(X, Y ).

(b) The directional derivative

lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

exists for every X ∈ V .
(c) There exists a unique h ∈ Hρ with h(Y ) = ρ(Y ).

If these conditions are satisfied then

(4.3) Λρ(X, Y ) = lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

for all X ∈ V .

Proof. (a) ⇒ (b) and equality (4.3) follow from Theorems 3.1 and 4.2.
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(b) ⇒ (c) : Let h ∈ Hρ with h(Y ) = ρ(Y ). Then, for every ε ∈ R and X ∈ V ,

ρ(Y + εX)− ρ(Y ) ≥ h(Y + εX)− h(Y ) = εh(X).

Therefore,

lim
ε→0−

ρ(Y + εX)− ρ(Y )
ε

≤ h(X) ≤ lim
ε→0+

ρ(Y + εX)− ρ(Y )
ε

and uniqueness of h follows from the equality of these limits.

(c) ⇒ (a) : Let X ∈ V . First of all, note that

ρ(Y )− ρ(−εX) = ρ(Y + εX − εX)− ρ(−εX) ≤ ρ(Y + εX) ≤ ρ(Y ) + ρ(εX)

implies

(4.4) lim
ε→0

ρ(Y + εX) = ρ(Y ).

It follows from (3.1) that for a linear and diversifying capital allocation Λρ

lim
ε→0−

Λρ(X, Y + εX) and lim
ε→0+

Λρ(X, Y + εX)

exist. Let U be the linear subspace of V generated by X and Y and define the linear
function f : U → R by

f(αY + βX) := α · ρ(Y ) + β · lim
ε→0+

Λρ(X, Y + εX).

It follows from (4.4) that for every α, β ∈ R

f(αY + βX) = α · lim
ε→0+

Λρ(Y + εX, Y + εX) + β · lim
ε→0+

Λρ(X, Y + εX)

= lim
ε→0+

Λρ(αY + βX, Y + εX) + α · lim
ε→0+

εΛρ(X, Y + εX)

= lim
ε→0+

Λρ(αY + βX, Y + εX).

Hence, f ≤ ρ on U . By the Hahn-Banach theorem, there exists a linear function h
on V with

h = f on U and h ≤ ρ on V.

Hence, h is the unique element of Hρ with h(Y ) = f(Y ) = ρ(Y ) and therefore
h = Λρ(., Y ). It follows that

Λρ(X, Y ) = lim
ε→0+

Λρ(X, Y + εX).

Λρ(X, Y ) = lim
ε→0−

Λρ(X, Y + εX)

is shown in the same way. Hence, Λρ is continuous at Y . 2
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5 Examples of capital allocation schemes

In this section we consider the most popular risk measures in the finance industry:

1. risk measures based on standard deviations,

2. expected shortfall,

3. value-at-risk.

The objective is to derive explicit allocation formulae for these specific measures.

5.1 Standard deviations

In classical portfolio theory, risk is measured by standard deviations (Markowitz,
1952). Although the significance of this concept is clearly diminished if applied to
heavy-tailed distributions, standard deviations are frequently used in the finance
industry.

Let p be a positive real number and let Lp denote the set of all random variables
X ∈ L0 such that |X|p is integrable. In this section we assume that V := L2.

DEFINITION 5.1. Let c be a non-negative real number and define the risk
measure ρc and the capital allocation ΛStd

c by

ρc(X) := c · Std(X) + E(X),
ΛStd

c (X, Y ) := c · Cov(X, Y )/Std(Y ) + E(X) if Std(Y ) > 0,
ΛStd

c (X, Y ) := E(X) if Std(Y ) = 0,

where E(X) and Std(X) denote the expectation and the standard deviation of X ∈ V
and Cov(X, Y ) the covariance of X, Y ∈ V .

First we will analyze this parametric class of risk measures.

DEFINITION 5.2. The risk measure ρ is called2

monotonous: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ) ∀X, Y ∈ V,
translation invariant: ρ(X + a) = ρ(X) + a ∀a ∈ R, X ∈ V.

The following theorem shows that ρc is translation invariant, positively homoge-
neous and sub-additive. In general, however, it is not monotonous for c > 0 (see
Fischer (2003) for a class of coherent risk measures based on one-sided moments).

2Note that there is a difference in notation compared to Artzner et al. (1999a): in their paper
monotonicity is defined by X ≤ Y ⇒ ρ(X) ≥ ρ(Y ). The reason for this difference is that Artzner
et al. (1999a) represent portfolios by value functions and not by loss functions.
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THEOREM 5.1. Let c be a non-negative real number.
(a) The risk measure ρc(X) = c · Std(X) + E(X) is translation invariant, positively
homogeneous and sub-additive.
(b) The risk measure ρ0 is monotonous. If c > 0 and there exists an A ∈ A with
0 < P(A) < c2/(1 + c2) then ρc is not monotonous.

Proof. (a) For every X, Y ∈ V and a, b ∈ R,

E(aX + bY ) = a · E(X) + b · E(Y ),
Std(aX + b) = |a| · Std(X),
Std(X + Y ) ≤ Std(X) + Std(Y ).

Hence, it immediately follows that ρc(X) is translation invariant, positively homo-
geneous and sub-additive for every c ≥ 0.

(b) Obviously, ρ0(X) = E(X) is monotonous. Let c > 0 and A ∈ A with 0 < p <
c2/(1 + c2), where p := P(A). Define X ∈ V with X = −1/p on A and X = 0
otherwise. The expectation and variance of X are

E(X) = −1
Var(X) = p(−1/p + 1)2 + (1− p)12 = p(1/p− 1)2 + p(1/p− 1)

= (1/p− 1)(1− p + p) = 1/p− 1.

Hence,
ρc(X) = c ·

√
1/p− 1− 1.

From 1/p > (1 + c2)/c2 = (1/c)2 + 1 we obtain ρc(X) > 0 and therefore

X ≤ 0, ρc(X) > ρc(0).

Hence, ρc is not monotonous. 2

By Theorem 4.2, there exists a linear, diversifying capital allocation with respect
to ρc. The following corollary provides an explicit allocation formula.

Corollary 5.1. Let c be a non-negative real number. ΛStd
c is a linear, diversifying

capital allocation with respect to ρc. If Std(Y ) > 0 then ΛStd
c is continuous at Y and

(5.1) ΛStd
c (X, Y ) = lim

ε→0

ρc(Y + εX)− ρc(Y )
ε

for every X ∈ V .

Proof. ΛStd
c is a linear, diversifying capital allocation with respect to ρc because

expectations and covariances are linear and Cov(X, Y ) ≤ Std(X) · Std(Y ).

lim
ε→0

Cov(X, Y + εX) = Cov(X, Y ) and lim
ε→0

Std(Y + εX) = Std(Y )
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immediately imply that ΛStd
c is continuous at every Y ∈ V with Std(Y ) > 0. Equality

(5.1) follows from Theorem 3.1. 2

The fact that ρc is not monotonous has unpleasant practical consequences for
the covariance allocation ΛStd

c . Let X, Y ∈ V and assume that X ≤ r for a constant
r ∈ R, i.e. the potential losses of X are bounded by r. However, since ρc is not
monotonous the contributory capital ΛStd

c (X, Y ) of X in Y might exceed r. In fact,
this problem frequently occurs in credit portfolios: if covariance allocation ΛStd

c is
used the contributory capital of a loan might be higher than its exposure (Kalkbrener
et al., 2004).

5.2 Expected shortfall

The coherency axioms in Artzner et al. (1997, 1999a) provide an excellent frame-
work for the theoretical analysis of risk measures. In particular, this axiomatization
highlights weaknesses of traditional measures based on standard deviations or quan-
tiles. As a consequence coherent risk measures are increasingly applied in the finance
industry.

Let L∞ denote the set of all (almost surely) bounded random variables on Ω, i.e.
L∞ consists of all random variables X for which there exists a constant r ∈ R with
P(|X| > r) = 0. In this subsection we assume that V equals L∞.

DEFINITION 5.3. A risk measure is called coherent if it is monotonous, trans-
lation invariant, positively homogeneous and sub-additive.

Let ρ be a coherent risk measure. It follows from Theorem 4.2 that Λρ in (4.2)
defines a linear and diversifying capital allocation. For coherent risk measures the
real-valued function Λρ(., Y ) is not only linear and continuous but it can be rep-
resented as an expectation with respect to a finitely additive probability (Theorem
2.3 in Delbaen, 2002). If ρ satisfies an additional monotonicity condition (Definition
4 in Delbaen, 2000) then only expectations with respect to σ-additive probability
measures have to be considered (Theorems 7 and 8 in Delbaen, 2000).

The most popular class of coherent risk measures is expected shortfall (see, for
instance, Rockafellar and Uryasev, 2000, 2001; Acerbi and Tasche, 2002). Let Y ∈ V ,
α ∈ (0, 1) and denote the smallest α-quantile by

qα(Y ) := inf{x ∈ R | P(Y ≤ x) ≥ α}.

The expected shortfall of Y at level α, denoted by ESα, is the risk measure defined
by

ESα(Y ) := (1− α)−1
∫ 1

α
qu(Y )du.

11



It is easy to show that

(5.2) ESα(Y ) = (1− α)−1(E(Y 1{Y >qα(Y )}) + qα(Y ) · (P(Y ≤ qα(Y ))− α))

is an equivalent characterization of expected shortfall. Furthermore, ESα is coherent
(Acerbi and Tasche, 2002) and satisfies the monotonicity condition in Delbaen (2000).
Hence, there exists a set Q of probability measures with

ESα(Y ) = max{EQ(Y ) | Q ∈ Q}.

We now constructQ (see Delbaen, 2000): for every Y ∈ V let the probability measure
QY be defined by

dQY

dP
:=

1{Y >qα(Y )} + βY 1{Y =qα(Y )}

1− α

where
βY :=

P(Y ≤ qα(Y ))− α

P(Y = qα(Y ))
if P(Y = qα(Y )) > 0.

By (5.2),
ESα(Y ) = EQY

(Y ) = max{EQ(Y ) | Q ∈ Q},

where Q is defined by
Q := {QY | Y ∈ V }.

According to (4.2),

ΛES
α (X, Y ) := EQY

(X) = (
∫

X · 1{Y >qα(Y )}dP + βY

∫
X · 1{Y =qα(Y )}dP)/(1− α)

is a linear, diversifying capital allocation with respect to ESα (for expected shortfall
allocation, see also Schmock and Straumann (1999)). If

(5.3) P(Y > qα(Y )) = 1− α or P(Y ≥ qα(Y )) = 1− α

then
lim
ε→0

dQY +εX

dP
=

dQY

dP
a.s.

for every X ∈ V and therefore ΛES
α is continuous at Y . In particular, (5.3) is satisfied

if P(Y = qα(Y )) = 0.

5.3 Value-at-risk

The value-at-risk VaRα(Y ) of a portfolio Y ∈ V ⊆ L0 at level α ∈ (0, 1) is defined
as an α-quantile of Y (RiskMetrics, 1995; see Jorion (1997), Duffie and Pan (1997)
and Dowd (1998) for an overview). More precisely, in this paper VaRα(Y ) denotes
the smallest α-quantile, i.e. VaRα(Y ) = qα(Y ). For general portfolios, VaR is not
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sub-additive and therefore diversification, which is commonly considered as a way
to reduce risk, might increase value-at-risk. Despite this shortcoming value-at-risk
has become the dominant concept for risk measurement in the finance industry and
has even achieved the high status of being written into industry regulations. The
development of sound capital allocation techniques for value-at-risk is therefore an
important practical problem (Garman, 1996, 1997).

The missing sub-additivity property of value-at-risk prevents the direct applica-
tion of the axiomatic approach developed in this paper: it follows from Theorem
4.2 that there does not exist a linear, diversifying capital allocation with respect to
VaR. However, the results in this paper provide some guidance which techniques to
use. In the following we will discuss allocation techniques based on

1. derivatives,

2. covariances,

3. expected shortfall.

Although there does not exist linear, diversifying capital allocations with respect
to VaR, the directional derivative

(5.4) lim
ε→0

VaRα(Y + εX)−VaRα(Y )
ε

might exist for certain portfolios X, Y ∈ V . Hence, Theorem 3.1 motivates to define
the contributory capital ΛVaR

α (X, Y ) of X in Y by (5.4). This allocation technique
has been suggested by Hallerbach (1999) for market risk applications. It works well
in a sufficiently continuous setting (see Tasche (1999), Lemus (1999) and Gouriéroux
et al. (2000) for criteria which ensure existence of (5.4)). However, in non-continuous
or even discrete models directional derivatives usually do not exist or they are not
continuous and highly unstable in α.

An alternative approach is to use the covariance allocation scheme analyzed in
subsection 5.1. More precisely, we define for X, Y ∈ L2 with E(Y ) ≤ VaRα(Y )

ΛVaR
α (X, Y ) := ΛStd

c(Y )(X, Y ),

where c(Y ) ∈ R satisfies

VaRα(Y ) = c(Y ) · Std(Y ) + E(Y ).

The covariance allocation of portfolio VaR is particularly popular in credit risk ap-
plications although the combination of value-at-risk and covariance allocation causes
problems if heavy-tailed distributions are involved: the contributory capital of a sub-
portfolio might be higher than its standalone capital, the contributory capital of an
individual loan might even be higher than its exposure (see Kalkbrener et al. (2004)
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for a detailed comparison of covariance allocation and expected shortfall allocation
in credit portfolios).

The second problem can be avoided by allocating portfolio VaR by expected
shortfall: if E(Y ) ≤ VaRα(Y ) define the contributory capital of X in Y by

ΛVaR
α (X, Y ) := ΛES

β(Y )(X, Y ),

where β(Y ) ∈ R satisfies

(5.5) VaRα(Y ) = ESβ(Y )(Y ).

Hence, the contributory capital of the subportfolio X reflects its contribution to the
tail {Y ≥ β(Y )} of the portfolio loss distribution which is determined by VaRα(Y )
according to (5.5). This technique for allocating portfolio VaR has been proposed in
a number of papers, for instance in Overbeck (2000) and Bluhm et al. (2002).
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