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In this paper we are concerned with the computation of prime decompositions of radicals

in polynomial rings over a noetherian commutative ring R with identity. We show that

prime decomposition algorithms in R can be lifted to R[x] if for every prime ideal P
in R univariate polynomials can be factored over the quotient field of the residue class

ring R/P . In the proof of this result a lifting algorithm is constructed which can be
considered as a generalization of the algorithm of Ritt and Wu.

1. Introduction

In the last twenty years several methods for computing primary decompositions of ideals
in multivariate polynomial rings over fields (Seidenberg (1974), Lazard (1985), Kredel
(1987), Eisenbud et al. (1992)), the integers (Seidenberg, 1978), factorially closed princi-
pal ideal domains (Ayoub (1982), Gianni et al. (1988)) and more general rings (Seiden-
berg, 1984) have been proposed. A related problem is the computation of the irreducible
components of an algebraic variety or, equivalently, the computation of the prime ideals
in the prime decomposition of a radical. A well-known method for performing this task
in a multivariate polynomial ring over a field of characteristic zero is the Ritt-Wu algo-
rithm based on the computation of characteristic sets (Ritt (1950), Wu (1984)). Another
method for solving the same problem can be found in (Wang, 1993). Giusti and Heintz
deal with irreducible and equidimensional decompositions of varieties given by polynomi-
als in multivariate polynomial rings over infinite perfect fields (Giusti and Heintz, 1990).
In Chistov and Grigor’ev (1983) an irreducible decomposition algorithm is presented and
analyzed that works in multivariate polynomial rings over fields which are finitely gener-
ated over primitive fields. In the present paper we are concerned with the computation of
prime decompositions of radicals in polynomial rings over noetherian commutative rings
with identity.

The prime ideals computed by the Ritt-Wu algorithm are not represented by bases
but by so-called irreducible ascending sets. We will not restrict ourselves to either one
of these two possible ways of representing prime ideals but will use the following rather
general concept. Let R be a noetherian commutative ring with identity, S a set of finite
subsets of R and Rep a surjective function from S to Spec(R), the set of prime ideals
in R. We assume that for a given A ∈ S we can algorithmically decide for every f ∈ R
whether f ∈ Rep(A). Then A ∈ S is called a representation of the prime ideal Rep(A)
and the pair (S, Rep) is called a system of representations in R.

Example: Let R be the multivariate polynomial ring K[x1, . . . , xn] over a field K
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and S the set of those Gröbner bases with respect to a given ordering which generate
prime ideals. We define the function Rep by Rep(C) := Ideal(C) for every C ∈ S, where
Ideal(C) denotes the ideal generated by C if C 6= ∅ and Ideal(∅) := {0}.

Another common way of representing prime ideals is by means of ascending sets: let S′

be the set of irreducible ascending sets in K[x1, . . . , xn] (Wu, 1984) and S := S′ ∪{{0}}.
We define the function Rep by mapping {0} to the prime ideal {0} and every irreducible
ascending set C to the prime ideal whose generic point is given by C.

Throughout this paper let R be a noetherian commutative ring with identity and
(S, Rep) a system of representations in R. We assume that R is explicitly given, i.e. that
one can carry out the ring operations in R, and also that there exists an algorithm that
computes for a finite subset F of R a (possibly empty) subset {C1, . . . , Cr} of S such
that

Radical(F ) =
r⋂

i=1

Rep(Ci),

where Radical(F ) denotes the radical of Ideal(F ). It is an objective of this paper to
investigate under which conditions this algorithm can be lifted to R[x]. A similar study
has been done by Seidenberg in order to lift algorithms for computing primary decom-
positions of ideals from R to R[x1, . . . , xn] (see Seidenberg (1984)). Our main result is
the following theorem.

Theorem 1.1. Assume that for every C ∈ S there exists an algorithm for expressing
every non-constant element of K[x] as a product of irreducible polynomials, where K
is the quotient field of the residue class ring R/Rep(C). Then there exists a system of
representations (S̄, Rep) in R[x] and an algorithm that computes for a given finite subset
F of R[x] a subset {C1, . . . , Cr} of S̄ such that

Radical(F ) =
r⋂

i=1

Rep(Ci).

We can inductively use Theorem 1.1 to lift prime decomposition algorithms in R to
multivariate polynomial rings over R if these polynomial rings satisfy the condition in
Theorem 1.1 (see Seidenberg (1974) for a class of rings with this property).

For proving Theorem 1.1 we first construct a system of representations (S̄, Rep) in R[x]
which can be considered as a generalization of the concept of irreducible ascending sets.
Then we construct the prime decomposition algorithm in R[x]. Despite its generality this
algorithm has a very simple structure. The same elementary operations are used as in the
Ritt-Wu algorithm: pseudodivision and factorization. Another method based on a similar
strategy is the algorithm for computing equidimensional decompositions of varieties in
Kalkbrener (1993). Compare also with Lazard (1991) and Wang (1993). Differences and
similarities to existing algorithms as well as open problems regarding the complexity and
the practical applicability of the presented algorithm are discussed in the last section of
this paper.
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2. Proof of Theorem 1.1

Let J be an ideal in R, f a polynomial in R[x] and I an ideal in R[x]. The image of f
in (R/J)[x] is denoted by fJ , the ideal {fJ | f ∈ I} in (R/J)[x] by IJ and the leading
coefficient of f by lc(f). If J is prime the quotient field of the residue class ring R/J is
denoted by K(J).

First we construct a system of representations (S̄, Rep) in R[x]. Our approach can be
considered as a generalization of the concept of irreducible ascending sets in Ritt (1950)
and Wu (1984). It is based on the following lemma.

Lemma 2.1. Let I be an ideal in R[x]. Then the following three conditions are equivalent.
(a) I is a prime ideal in R[x].
(b) I ∩R is prime in R, J is prime in K(I ∩R)[x] and II∩R = J ∩ (R/I ∩R)[x], where
J is the ideal in K(I ∩R)[x] generated by II∩R.
(c) I ∩ R is prime in R and there exists a polynomial q ∈ K(I ∩ R)[x] which is either
irreducible over K(I ∩R) or zero and

for every f ∈ R[x]: f ∈ I iff f I∩R ∈ Ideal({q}).

Proof. (a) ⇔ (b): Since
II∩R ∩ (R/I ∩R) = {0}, (2.1)

the equivalence of (a) and (b) follows from Lemma 4.1 and Lemma 4.2 in Gianni et al.
(1988).
(b)⇒ (c): Let q ∈ K(I∩R)[x] be the polynomial that generates J . From (2.1) we obtain
II∩R 6= (R/I ∩ R)[x] and therefore J 6= K(I ∩ R)[x]. Hence, q is either irreducible or
zero. Let f ∈ R[x]. Then

f ∈ I iff f I∩R ∈ II∩R iff f I∩R ∈ J iff f I∩R ∈ Ideal({q}).

(c) ⇒ (b): J is prime because q generates J and q is irreducible or zero. Let f ∈ R[x]
with f I∩R ∈ J . Then f I∩R ∈ Ideal({q}) and therefore f ∈ I and f I∩R ∈ II∩R. 2

We now define

S̄ := S ∪
⋃

C∈S

{C ∪ {f} | f ∈ R[x] such that fPC is irreducible over K(PC)},

where PC := Rep(C), and

for B ∈ S : Rep(B) := {f ∈ R[x] | fP = 0}, where P := Rep(B),
for B ∈ S̄ − S : Rep(B) := {f ∈ R[x] | gP divides fP in K(P )[x]},

where {g} = B −R and P := Rep(B ∩R).

Note that membership for Rep(B), B ∈ S̄, can be algorithmically decided. Hence, it
follows from Lemma 2.1 that (S̄, Rep) is a system of representations in R[x].

It remains to construct a prime decomposition algorithm in R[x]. By assumption, there
exist the following two algorithms.
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primedecR (in: F ; out: O)

Input: F , a finite subset of R.
Output: O = {C1, . . . , Cr}, a subset of S with

Radical(F ) =
r⋂

i=1

Rep(Ci).

factor (in: C, f ; out: g1, . . . , gr)

Input: C, an element of S,
f , a polynomial in R[x] with fP 6= 0, where P := Rep(C).

Output: g1, . . . , gr, polynomials in R[x] such that lc(gi) /∈ P and gi
P is either constant

or irreducible over K(P ) for every i ∈ {1, . . . , r} and there exists a q in R with

qP · fP =
r∏

i=1

gi
P .

We have assumed that for a given C ∈ S we can algorithmically decide for every f ∈ R
whether f ∈ Rep(C). Hence, using pseudodivision we can easily construct an algorithm
that satisfies the following specification.

gcd (in: C, F ; out: g)

Input: C, an element of S,
F = {f1, . . . , fr}, a non-empty finite subset of R[x].

Output: g, a polynomial in Ideal(P ∪ F ) such that gP is the greatest common divisor
of f1

P , . . . , fr
P in K(P )[x] (up to a multiplicative constant), where P := Rep(C).

Using these algorithms we construct primedecR[x]:

M := primedecR(F ∩R)
for every C ∈M do

if fRep(C) = 0 for every f ∈ F
then

OC := {C}
else

g := gcd(C, F )
g1, . . . , gr := factor(C, g)
OC := {C ∪ {gi} | i ∈ {1, . . . , r}, gi /∈ R}∪⋃r

i=1 primedecR[x](F ∪ {gi, lc(gi)})
O :=

⋃
C∈M OC

It remains to show that this algorithm terminates and satisfies the following specifica-
tion.
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primedecR[x] (in: F ; out: O)

Input: F , a finite subset of R[x].
Output: O = {C1, . . . , Cr}, a subset of S̄ with

Radical(F ) =
r⋂

i=1

Rep(Ci).

Proof of termination of primedecR[x]: Let F satisfy the input specification and let
C ∈M . If fRep(C) = 0 for every f ∈ F then termination is obvious. Otherwise, it follows
from the specification of factor that for every i ∈ {1, . . . , r} the leading coefficient of gi

is not in Rep(C) and therefore not in Ideal(F ∩R). Since R is noetherian primedecR[x]

terminates. 2

The correctness of the algorithm is based on the following decomposition mechanism.
Let L ⊆ R[x] be multiplicatively closed and I an ideal in R[x]. We define

IL := {g ∈ R[x] | f · g ∈ I for some f ∈ L}.

It is easy to see that IL is an ideal (van der Waerden, 1967, p. 139).

Lemma 2.2. Let f be an element of R[x], L the set {fm | m a natural number} and I
an ideal in R[x]. Then

Radical(I) = Radical(IL) ∩Radical(I ∪ {f}).

Proof. Obviously,

Radical(I) ⊆ Radical(IL) ∩Radical(I ∪ {f}).

Let g ∈ IL ∩ Ideal(I ∪ {f}). Then there exists a natural number m such that fm · g ∈ I
and an h ∈ R[x] with g − h · f ∈ I. Hence, fm−1 · g2 − h · fm · g ∈ I and therefore
fm−1 · g2 ∈ I. In this way we obtain gm+1 ∈ I. Thus, IL ∩ Ideal(I ∪ {f}) ⊆ Radical(I).
By Theorem 9 in (Zariski and Samuel, 1975, p. 147),

Radical(I) ⊇ Radical(IL) ∩Radical(I ∪ {f}). 2

Lemma 2.3. Let C ∈ S and f ∈ R[x] such that lc(f) /∈ P and fP is irreducible over
K(P ), where P := Rep(C). Then

Ideal(P ∪ {f})L = Rep(C ∪ {f}),

where L := {lc(f)m | m a natural number}.

Proof. Let g ∈ R[x]. If g ∈ Ideal(P ∪ {f})L then fP divides gP in K(P )[x] and
therefore g ∈ Rep(C ∪{f}). On the other hand, if g ∈ Rep(C ∪{f}) then hP = 0, where
h denotes the pseudoremainder of g and f . Thus, g ∈ Ideal(P ∪ {f})L. 2

Proof of correctness of primedecR[x]: Let F satisfy the input specification. We will
show correctness by induction.
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Induction basis: Ideal(F ∩ R) = R. Then the output set O is empty and correctness is
obvious.
Induction step: Ideal(F ∩ R) 6= R. It follows from the specifications of gcd and factor,
the definition of Rep and the induction hypothesis that

Radical(F ) ⊆
⋂

A∈O

Rep(A).

It remains to show that for every prime ideal P with Radical(F ) ⊆ P

there exists an A ∈ O with Rep(A) ⊆ P. (2.2)

Obviously, there exists a C ∈ M with Rep(C) ⊆ P . If C ∈ O then (2.2) is obviously
satisfied. Otherwise, there exists an i ∈ {1, . . . , r} with gi ∈ P , where g1, . . . , gr :=
factor(C, gcd(C, F )). By Lemma 2.2,

Radical(I) = Radical(IL) ∩Radical(I ∪ {lc(gi)}),

where I := Ideal(Rep(C) ∪ {gi}) and L := {lc(gi)m | m a natural number}. Therefore,
by Lemma 2.3,

Rep(C ∪ {gi}) ⊆ P or lc(gi) ∈ P.

In the second case (2.2) follows from the induction hypothesis. 2

3. Modifications

No implementation of primedecR[x] has been made yet. Therefore, we know nothing
about the practical applicability of this algorithm. In this context the following two
problems are of importance. In general, primedecR[x] does not compute a reduced prime
decomposition of a given radical.

Example: Let R be the univariate polynomial ring Q[y] over the rationals Q and S
the set

{{f} ⊆ R | f = 0 or f is irreducible in R}.

We define the function Rep by Rep(C) := Ideal(C) for every C ∈ S. For the input set
{yx2+x+y} ⊆ R[x] the following prime decomposition of the prime ideal Radical({yx2+
x + y}) is computed by primedecR[x]:

Radical({yx2 + x + y}) = Rep({yx2 + x + y}) ∩ Rep({y, x}).

Obviously, the second component is superfluous.

From a computational point of view the development of variants of primedecR[x]

which compute as few superfluous components as possible is an important problem.
The algorithm primedecR[x] is a recursive algorithm. It terminates because Ideal(F1∩

R) is a proper subset of Ideal(F2 ∩R), where F1 and F2 are input sets of successive calls
of primedecR[x]. Therefore, if F and G are finite subsets of R[x] with

Radical(F ) = Radical(G) but Radical(F ∩R) ⊂ Radical(G ∩R)

then in general primedecR[x] terminates faster with input G than with input F . Hence,
the question arises whether the performance of primedecR[x] can be improved by us-
ing an elimination method for preprocessing. For instance, if R is a polynomial ring
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over a field we could compute primedecR[x](F ∪ C) or primedecR[x](B) instead of
primedecR[x](F ), where C is a characteristic set of F (Wu, 1984) and B is a Gröbner
basis of F with respect to a lexicographical ordering with x as the highest variable. If
characteristic sets are used for preprocessing primedecR[x] becomes very similar to the
prime decomposition algorithm of Ritt and Wu (Wu, 1984).

Another algorithm based on a similar strategy can be found in Kalkbrener (1993).
Instead of assuming that every radical in R can be decomposed into prime ideals consider
rings which satisfy the following weaker condition:

There exist a set S of finite subsets of R, a function Rep from S to the set of radicals in
R, an algorithm decompose that computes for a finite subset F of R elements C1, . . . , Cr

of S such that

Radical(F ) =
r⋂

i=1

Rep(Ci),

and an algorithm split that computes for a given A ∈ S and f ∈ R elements B1, . . . , Br,
C1, . . . , Cs of S with the properties

Rep(A) =
r⋂

i=1

Rep(Bi) ∩
s⋂

i=1

Rep(Ci)

and

f ∈ Rep(Bi) for i = 1, . . . , r and Rep(Ci) : f = Rep(Ci) for i = 1, . . . , s.

It is proved in Kalkbrener (1993) that multivariate polynomial rings over explicitly
given fields satisfy the above condition. Furthermore, it is shown that the set S can be
constructed in such a way that Rep(C) is equidimensional for every C ∈ S and therefore
decompose computes equidimensional decompositions of radicals. The decomposition
algorithm in Kalkbrener (1993) is similar to primedecR[x]. The main difference is that
radicals are decomposed using algorithm split instead of factorization. A generalization
of the results in Kalkbrener (1993) to multivariate polynomial rings over noetherian
commutative rings with identity will be presented in a forthcoming paper.

The complexity of computing characteristic sets has been analyzed by Gallo and Mishra
(1990). But we do not know the complexity of the prime decomposition algorithm of
Ritt and Wu or the complexity of the method presented in this paper. We think that
a complexity analysis of algorithms of this type and a comparison with the results in
Chistov and Grigor’ev (1983) and Giusti and Heintz (1990) are challenging problems for
future research.

Acknowledgement: I want to thank both referees for their detailed and helpful com-
ments on an earlier version of this paper.
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