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Abstract

In the framework of a standard structural credit portfolio model, we inves-
tigate the Monte Carlo based estimation of capital allocation according to ex-
pected shortfall. We develop and analyze several variance reduction techniques
based on importance sampling, analytic approximations of portfolio loss distri-
butions and a semi-analytical allocation technique. The focus of the paper is on
the application of these techniques to large credit portfolios used in economic
capital calculations. Our results show that the inherent numerical problems of
expected shortfall allocation can be overcome and, as a consequence, economic
capital allocation according to expected shortfall is a viable option for financial
institutions.

Key words: Monte Carlo simulation, variance reduction, importance sampling, port-
folio credit risk, expected shortfall allocation

1 Introduction

In a typical bank, risk capital for credit risk far outweighs capital requirements for
any other risk class. Key drivers of credit risk are concentrations in a bank’s credit
portfolio. These risk concentrations may be caused by material concentrations of
exposure to individual names as well as large exposures to single sectors (geographic
regions or industries) or to several highly correlated sectors. The most common
approach to introduce sector concentration into a credit portfolio model is through
systematic factors affecting multiple borrowers. Conditional on the systematic fac-
tors, the residual default risks of individual borrowers are considered independent
and modeled by specific (or idiosyncratic) risk factors.3 In this model, the credit
worthiness of each borrower is defined by a so-called Ability-to-Pay variable that is

1Deutsche Bank AG, Risk Analytics & Instruments. The views expressed in this article are the
authors’ personal opinions and should not be construed as being endorsed by Deutsche Bank.

2University of Leipzig, Department of Mathematics.
3In this paper, we assume that the systematic and specific factors follow a multi-variate normal

distribution as proposed by Gupton et al. (1997) in CreditMetrics. We will refer to this model class
as Gaussian multi-factor models. See Crouhy et al. (2000) and Bluhm et al. (2002) for a survey on
credit portfolio modeling.



completely specified by the systematic risk factors and the specific risk factor of the
borrower. In particular, default and rating of a borrower at the end of the planning
period are determined by the value of its Ability-to-Pay variable.4

This credit portfolio model captures credit losses due to default and due to rating
migration and provides an appropriate framework for assessing credit risk at different
levels of the bank.

Top level: quantification of the risk in the bank’s credit portfolio, which is usually
expressed as the bank’s economic capital for credit risk.

Lower levels: economic capital allocation to subportfolios and individual transac-
tions.

The standard approach in the finance industry is to define the economic capital in
terms of a quantile of the portfolio loss distribution. The capital charge of an in-
dividual transaction is usually based on a covariance technique and called volatility
contribution. However, there is theoretical and practical evidence that the combina-
tion of quantiles and covariances is not a satisfactory approach to risk measurement
and capital allocation in credit portfolios (Kalkbrener et al., 2004).

An alternative definition of economic capital is based on the expected shortfall,
which can intuitively be interpreted as the average of all losses above a given quan-
tile of the loss distribution. It is well known that expected shortfall satisfies the
axioms of coherent risk measures (Acerbi and Tasche, 2002) proposed in Artzner et
al. (1999). Moreover, there is a natural way to allocate the expected shortfall of the
portfolio: the expected shortfall contribution of a transaction is its average contri-
bution to the portfolio losses above the specified quantile. It has been demonstrated
in Kalkbrener et al. (2004) that expected shortfall allocation detects concentration
risk more accurately than covariance techniques.

Despite its theoretical and practical advantages, there is a major obstacle to the
application of expected shortfall allocation in Gaussian multi-factor models. Since
the loss distributions of the portfolio and single transactions are not tractable in
analytical form, Monte Carlo techniques are the standard approach to the actual
calculation of expected shortfall contributions. It is easy to see that due to statisti-
cal fluctuations the simulation-based estimation of this conditional expectation is a
demanding computational problem,5 in particular for large portfolios.

The objective of this paper is the development of variance reduction techniques
for expected shortfall that make it practically feasible to allocate economic capital
to individual transactions. The economic capital of a bank is derived from the loss
distribution of its entire credit portfolio. Even after the application of segmentation

4The multi-state model distinguishes between different ratings of a borrower whereas the two-
state model only identifies default and non-default events.

5We refer to Kurth and Tasche (2003) for a computational approach to expected shortfall in the
analytic framework of CreditRisk+.
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techniques, this portfolio may consist of more than 100000 different borrowers. As a
consequence, 100 systematic and 100000 specific factors are a realistic set-up for the
economic capital calculation in a bank. The focus of this paper is therefore on the
development of efficient numerical techniques for expected shortfall allocation that
are tailored to portfolios of that size.

A Gaussian multi-factor model with rating migration serves as quantitative frame-
work for the development of the algorithms. An important feature of this model is
the large number of independent specific factors. This property can be utilized by
splitting the calculation of expected shortfall contributions into two steps (compare
to Glasserman and Li (2005) or McNeil et al. (2005) in the more general context of
Mixture Models):

1. Simulation of systematic factors.

Typically, these factors are the main drivers for large portfolio losses. Efficient
variance reduction techniques are therefore particularly important for the sim-
ulation of the systematic factors.

2. Calculation of expected shortfall contributions in each systematic scenario.

Conditional on a systematic scenario, loss variables of individual borrowers are
independent. There exist several options how to exploit conditional indepen-
dence for stabilizing expected shortfall contributions.

We use an importance sampling technique to improve the Monte Carlo simulation of
the systematic factors. In the credit risk literature, importance sampling has been
recently suggested in a number of papers, see Avranitis and Gregory (2001), Glasser-
man and Li (2005), Kalkbrener et al. (2004), Merino and Nyfelder (2004), Morokoff
(2004), Glasserman (2005), Egloff et al. (2005) and Glasserman et al. (2007). In
contrast to straightforward Monte Carlo simulation, importance sampling puts more
weight on the sample range of interest, thereby making the simulation more efficient.
However, it is generally far from obvious how such a change of measure should be
obtained in a practical manner. In a Gaussian multi-factor model, a natural im-
portance sampling measure is a negative shift of the systematic factors: a negative
shift enforces a higher number of defaults and therefore increases the stability of
the MC estimate of expected shortfall. For calculating the shift, Glasserman and Li
(2005) minimize an upper bound on the second moment of the importance sampling
estimator of the tail probability. Furthermore, they show that the corresponding
importance sampling scheme is asymptotically optimal. Glasserman et al. (2007)
use large deviation analysis to calculate multiple mean shifts. Egloff et al. (2005)
suggest an adaptive importance sampling technique that uses the Robbins-Monro
stochastic approximation method. Our approach is based on the infinite granular-
ity approximation of the portfolio loss distribution (compare to Vasicek (2002) and
Gordy (2003)). More precisely, we approximate the original portfolio P by a ho-
mogeneous and infinitely granular portfolio P̄ . The loss distribution of P̄ can be
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specified by a Gaussian single-factor model. The calculation of the shift of the sys-
tematic factors is now done in two steps: in the first step, we calculate the optimal
mean in this single-factor setting and then lift the scalar mean to a mean vector
for the systematic factors in the original multi-factor model. The efficiency of the
proposed importance sampling scheme clearly depends on the quality of the infinite
granularity approximation. By definition, the analytic loss distribution of the in-
finitely granular portfolio provides an excellent fit to portfolio loss distributions of
large and well-diversified portfolios. Since these portfolio characteristics are typical
for the credit portfolio of a large international bank, we experienced significant im-
provements in the stability of the economic capital calculations: applied to a realistic
test portfolio of 25000 loans it reduces the variance of the Monte Carlo estimate of
expected shortfall - and therefore the number of required simulations - by a factor of
400. The average variance reduction experienced for expected shortfall contributions
of individual loans is of the order of 150.

The second class of variance reduction techniques presented in this paper utilizes
the independence of specific risk factors. We have combined different approaches
with importance sampling of systematic factors:

1. importance sampling of specific factors based on exponential twisting of default
probabilities (Glasserman and Li, 2005; Merino and Nyfeler, 2004),

2. analytic approximations of conditional loss distributions motivated by the ap-
plication of the central limit theorem and

3. deterministic calculation of the expected shortfall contribution of the i-th bor-
rower in scenarios where values of all systematic factors and all but the i-th
specific factor have been simulated (compare to Merino and Nyfeler (2004)).

The 25000 loan portfolio and a smaller portfolio of 1000 loans have been used for
comparing the variance reductions for MC estimates of expected shortfall contri-
butions obtained by these techniques. Our results indicate that the last approach,
i.e. importance sampling of systematic factors together with conditional allocation,
is particularly well suited for large portfolios: on average, the variance of expected
shortfall contributions of individual loans is reduced by a factor of 4000.

The paper has the following structure. For the sake of simplicity we initially
develop all variance reduction techniques in a Gaussian multi-factor model that
does not distinguish between different rating states but only between default and
non-default. This basic two-state model is presented in Section 2.1. Section 2.2
reviews analytic techniques for approximating the portfolio loss distribution in the
two-state model. Expected shortfall allocation is formally introduced in Section 3.
Section 4 is devoted to the development of the importance sampling technique for
systematic risk factors. Variance reduction techniques are applied to specific risk
factors in Section 5: importance sampling, conditional expected shortfall allocation
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and Gaussian approximation techniques. Numerical results are presented in Section
6. Section 7 introduces the rating migration model and generalizes the proposed
techniques to this multi-state framework.

2 Loss distributions of Gaussian multi-factor models

2.1 The two-state credit portfolio model

For the sake of simplicity we develop and analyze variance reduction techniques in
the framework of a credit portfolio model in default-only mode. We refer to Section
7 for generalizations to models which incorporate rating migration.

The credit portfolio P consists of n loans. With each loan we associate an Ability-
to-Pay variable Ai : Rm+1 → R, which is a linear combination of the m systematic
variables x1, . . . , xm and a specific variable zi:

Ai(x1, . . . , xm, zi) :=
m∑
j=1

φijxj +
√

1−R2
i zi (1)

with 0 ≤ R2
i ≤ 1 and weight vector (φi1, . . . , φim). The loan loss Li : Rm+1 → R and

the portfolio loss function L : Rm+n → R are defined by

Li := li · 1{Ai≤Di}, L :=
n∑
i=1

Li, (2)

where 0 < li and Di ∈ R are the (deterministic) loss-at-default and the default
threshold respectively. As probability measure P on Rm+n we use the product mea-
sure

P := N0,C ×
n∏
i=1

N0,1,

where N0,1 is the standardized one-dimensional normal distribution and N0,C the
m-dimensional normal distribution with mean 0 = (0, . . . , 0) ∈ Rm and non-singular
covariance matrix C ∈ Rm

m. Note that each xi, zi and Ai is a centered and nor-
mally distributed random variable under P. We assume that the weight vector
(φi1, . . . , φim) has been normalized in such a way that the variance of Ai is 1. Hence,
the default probability pi of the i-th loan equals

pi := P(Ai ≤ Di) = N(Di),

where N denotes the standardized one-dimensional normal distribution function.
This relation is used to determine the default threshold from empirical default prob-
abilities.
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2.2 Analytic approximations

The portfolio loss distribution L defined in (2) can be considered as a discrete dis-
tribution on a high dimensional state space with 2n default/non-default states. It
does not have an analytic form. Monte Carlo simulation is the standard technique
for the actual calculation of risk capital at portfolio and transaction level. However,
Monte Carlo estimates of risk measures derived from the tail of the distribution - like
value-at-risk or expected shortfall - tend to be numerically unstable in this credit
portfolio model. Analytic approximations have therefore been proposed

1. to calculate portfolio risk and risk contributions in a purely analytical way or

2. for the development of importance sampling techniques in order to improve
Monte Carlo stability.

The importance sampling technique proposed in this paper utilizes the infinite gran-
ularity approximation of loss distributions of homogeneous portfolios.

2.2.1 Infinite granularity approximation for homogeneous portfolios

Let χ = (χ1, . . . , χm) ∈ Rm be values of the m systematic variables. The specific
variables zi are independent and therefore the Li are independent on {x = χ}. Hence,
if n is sufficiently large the portfolio loss function L =

∑n
i=1 Li can be approximated

on {x = χ} by applying a limit theorem to L/s, where s is an appropriate scaling
factor. The most straightforward approximation is based on applying the law of
large numbers to (1/n) ·

∑n
i=1 Li, i.e. the portfolio loss function L is approximated

by its conditional mean on {x = χ}.
Consider now a homogeneous portfolio P̄ , i.e. each loan has the same loss-at-

default l, default probability p, R2 and set of factor weights (ρ1, . . . , ρm) ∈ Rm. The
application of the above strategy leads to the following result.6

Theorem 1 Let the loss function L̄i of the i-th loan in the homogeneous portfolio
P̄ be defined by

L̄i := l · 1{Āi≤N−1(p)},

where Āi denotes the i-th homogeneous Ability-to-Pay variable

Āi(x1, . . . , xm, zi) :=
m∑
j=1

ρjxj +
√

1−R2zi.

Then

lim
n→∞

(1/n) ·
n∑
i=1

L̄i = l ·N

(
N−1(p)−

∑m
j=1 ρjxj√

1−R2

)
6We refer to Vasicek (1991) for a proof. Generalizations are given in Bluhm et al. (2002) and

McNeil et al. (2005).
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holds almost surely on Ω.

Note that if the linear sum
∑m

j=1 ρjxj of the systematic variables in the homogeneous
m-factor model is considered as one systematic factor then the m-factor model is
transformed into a one-factor model with Ability-to-Pay variables

√
R2x+

√
1−R2zi.

In order to utilize this analytic distribution in our inhomogeneous multi-factor
setting, the original portfolio P has to be approximated by a homogeneous and
infinitely granular portfolio P̄ . However, there is no unique procedure to establish
the homogeneous portfolio, which is closest to a given portfolio.

We propose the following technique for determining the parameters of the ho-
mogeneous portfolio P̄ , i.e. loss-at-default l, default probability p, R2 and factor
weights ρj , j = 1, . . . ,m:

Loss and default probability. The homogeneous loss l is the average of the
individual losses li and the homogeneous default probability p is the loss-at-default
weighted default probability of all loans in the portfolio:

l :=
∑n

i=1 li
n

, p :=
∑n

i=1 pili∑n
i=1 li

. (3)

Weight vector. The homogeneous weight vector is the normalized, weighted sum
of the weight vectors of the individual loans. In this paper, the positive weights
g1, . . . , gn ∈ R are given by gi := E(Li) = pili, i.e. the i-th weight equals the i-th
expected loss, and the homogeneous weight vector ρ = (ρ1, . . . , ρm) is defined by

ρ := ψ/s with ψ = (ψ1, . . . , ψm) :=
n∑
i=1

gi · (φi1, . . . , φim). (4)

The scaling factor s ∈ R is chosen such that

R2 =
m∑

i,j=1

ρi · ρj · Cov(xi, xj) (5)

holds, where R2 is defined in (6).

R2. The specification of the homogeneous R2 is based on the condition that the
weighted sum of Ability-to-Pay covariances is identical in the original and the ho-
mogeneous portfolio. More precisely, define

R2 :=

∑m
k,l=1 ψkψlCov(xk, xl)−

∑n
i=1 g

2
iR

2
i

(
∑n

i=1 gi)2 −
∑n

i=1 g
2
i

(6)
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and the i-th homogeneous Ability-to-Pay variable by

Āi(x1, . . . , xm, zi) :=
m∑
j=1

ρjxj +
√

1−R2zi.

The specification of the homogeneous R2 is motivated by the following result.

Proposition 1 Equality (7) holds for the weighted sum of Ability-to-Pay covari-
ances of the original and the homogeneous portfolio:

n∑
i,j=1

gigjCov(Ai, Aj) =
n∑

i,j=1

gigjCov(Āi, Āj). (7)

Proof: We have
n∑

i,j=1

gigjCov(Ai, Aj) =
n∑

i,j=1

m∑
k,l=1

giφikgjφjlCov(xk, xl) +
n∑
i=1

g2
i (1−R2

i )

=
m∑

k,l=1

ψkψlCov(xk, xl) +
n∑
i=1

g2
i (1−R2

i ) (8)

and, by (5),

n∑
i,j=1

gigjCov(Āi, Āj) =
n∑

i,j=1

gigj

m∑
k,l=1

ρkρlCov(xk, xl) +
n∑
i=1

g2
i (1−R2)

=
n∑

i,j=1

gigjR
2 +

n∑
i=1

g2
i (1−R2). (9)

If R2 is defined by (6) then (8) equals (9) and the proposition is proved. �

Alternative approaches to portfolio homogenization are proposed in Glasserman
(2004). He presents two homogeneous single-factor approximations based on

1. matching mean and variance of the loss distributions or

2. approximations of the decay rate of the distribution tail P(L > c).

Compared to Glasserman’s techniques, the heuristic (6) has the advantage that it
is extremely fast, even for large portfolios. We refer to Glasserman (2004) for a
comparison of the three techniques.
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2.2.2 Moment generating functions and saddle-points

Saddle-point approximations are another frequently used analytical technique. Fol-
lowing Glasserman and Li (2005), we have implemented an importance sampling
technique for specific factors that uses saddle-points (see Section 5.1). Here we
briefly review the definition of saddle-points and their calculation in the portfolio
model introduced in Section 2.1.

For a random variable X, the cumulant generating function (KGF) is defined as

ψX(θ) = log(E(eθX))

for complex θ. The tail probability of X can be recovered from the KGF by a contour
integral

P(X > c) =
1

2πi

∫ +i∞

−i∞

eψX(θ)−θ c

θ
dθ, (10)

in which the path of integration is up the imaginary axis and runs to the right of
the origin to avoid the pole there.

The KGF is a useful construction because when independent random variables
are added, their KGFs are added. This feature is important for calculating the KGF

ψL(θ, χ) := ψL|x=χ(θ)

of the portfolio loss distribution L conditional on given values χ = (χ1, . . . , χm) ∈
Rm of the systematic factors: on {x = χ}, the Ability-to-Pay variables A1, . . . , An
become independent with conditional default probabilities

pi(χ) := P(Ai ≤ Di|x = χ) = N

N−1(pi)−
∑m

j=1 φijχj√
1−R2

i

 (11)

and therefore

ψL(θ, χ) =
n∑
i=1

ψLi(θ, χ) =
n∑
i=1

log(1 + pi(χ)(eθ li − 1)).

On the real axis, ψL(θ, χ)− θc has a unique minimum θc(χ), the saddle-point, that
can be written as

θc(χ) =
{

unique θ such that ∂
∂θψL(θ, χ) = c if c > E(L|x = χ),

0 if c ≤ E(L|x = χ).

Referring to equation (10), Martin et al. (2001a, 2001b) approximate P(L > c)
by a Taylor series expansion of ψL(θ, χ) − θc around the saddle-point θc(χ). They
show that this technique works very well for particular classes of credit portfolio
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models. However, for Gaussian multi-factor models, this approach would require
the calculation of a multidimensional integral whose dimension corresponds to the
number of systematic factors. For our purposes, this is a hopeless task (Martin et
al., 2001a).

Application of saddle-point techniques in the one-factor Vasicek model can be
found in Huang et al. (2006). Glasserman and Li (2005) use saddle-points in their
importance sampling for systematic as well as specific factors. More details are given
in Section 5.1.

3 Coherent risk measurement and capital allocation

The objective of this section is the formal definition of risk measures and allocation
schemes, in particular expected shortfall allocation.

After JP Morgan made its RiskMetrics system public in 1994 value-at-risk became
the dominant concept for risk measurement. The value-at-risk VaRα(L) of L at level
α ∈ (0, 1) is defined as an α-quantile of L. More precisely, in this paper

VaRα(L) := inf{x ∈ R | P(L ≤ x) ≥ α}

is the smallest α-quantile. While the VaR methodology encourages diversification
for the special case of an elliptically distributed random vector (X,Y ), i.e.

VaR(X + Y ) ≤ VaR(X) + VaR(Y ) (12)

(McNeil et al. 2005), in general subadditivity (12) does not hold for value-at-risk.
Since for typical credit portfolios the assumption of an elliptical distribution cannot
be maintained, diversification, which is commonly considered as a way to reduce
risk, may increase value-at-risk.

Another disadvantage of value-at-risk is that the allocation of portfolio VaR to
subportfolios and individual transactions is difficult in credit portfolio models with
discrete loss distributions (Kalkbrener, 2005). The standard solution is to allocate
portfolio VaR proportional to the covariances

Cov(L1, L), . . . ,Cov(Ln, L). (13)

This allocation technique, called volatility allocation, is the natural choice in classical
portfolio theory where portfolio risk is measured by standard deviation (or volatility).

In general, combining volatility allocation with value-at-risk works well as long
as all loss distributions are close to normal. However, for credit portfolios it does
not: the capital allocated to a subportfolio P̄ of P might be greater than the risk
capital of P̄ considered as a stand-alone portfolio, the capital charge of a loan might
even be higher than its exposure (Kalkbrener et al., 2004).
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An alternative risk measure is expected shortfall (see, for instance, Rockafellar
and Uryasev, 2000; Acerbi and Tasche, 2002): the expected shortfall of L at level α
is defined by

ESα(L) := (1− α)−1
∫ 1

α
VaRu(L)du.

An equivalent definition of expected shortfall is

ESα(L) = (1− α)−1(E(L1{L>VaRα(L)}) + VaRα(L) · (P(L ≤ VaRα(L))− α)). (14)

It is easy to see that for most loss distributions the expected shortfall ESα is domi-
nated by the first term

E(L|L > VaRα(L)) = (1− α)−1E(L · 1{L>VaRα(L)}). (15)

Intuitively, expected shortfall can therefore be interpreted as the average of all losses
above a given quantile of the loss distribution. The second term in (14) takes care
of jumps of the loss distribution at its quantile and ensures coherence as defined in
Artzner et al. (1997, 1999). In particular, the subadditivity property (12) holds for
expected shortfall.

Another important advantage of expected shortfall is the simple allocation of
risk capital to subportfolios or individual transactions: in accordance with (14) the
expected shortfall contribution of the i-th loan is defined as

ESCα(Li, L) := (1− α)−1(E(Li · 1{L>VaRα(L)}) + βL · E(Li · 1{L=VaRα(L)})) (16)

with
βL :=

P(L ≤ VaRα(L))− α

P(L = VaRα(L))
.

Again the definition (16) is usually dominated by its first term

E(Li|L > VaRα(L)) = (1− α)−1E(Li · 1{L>VaRα(L)}). (17)

Hence, the expected shortfall contribution of a loan can be considered as its average
contribution to portfolio losses above quantile VaRα(L).

4 Importance sampling applied to systematic factors

Monte Carlo simulation is the standard technique for the actual calculation of ex-
pected shortfall at portfolio and transaction level in the Gaussian multi-factor model
presented in Section 2.1. The main practical problem in applying expected shortfall
to realistic credit portfolios is the computation of numerically stable MC estimates.
In the rest of the paper, we present techniques to reduce the variance of Monte Carlo
simulation:
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1. in this section, importance sampling is applied to the Monte Carlo simulation
of systematic factors,

2. in Section 5, variance reduction techniques are developed that utilize the inde-
pendence of loss variables of individual borrowers conditional on a systematic
scenario.

4.1 Straightforward Monte Carlo simulation

The efficient computation of expected shortfall (15) and expected shortfall contribu-
tions (17) is a challenging task for realistic portfolios and high confidence levels α.
Straightforward Monte Carlo simulation does not work well due to the high variance
of L · 1{L>VaRα(L)} and Li · 1{L>VaRα(L)} respectively (see (21) and Sections 4.5 and
6). As an example, assume that we want to compute expected shortfall with respect
to the α = 99.9% quantile and compute ν = 100000 MC samples s1 ≥ s2 ≥ . . . ≥ sν
of the portfolio loss L. Then ESα(L) becomes

(1− α)−1E(L · 1{L>c}) = (1− α)−1
∫
L · 1{L>c} dP =

100∑
i=1

si/100, (18)

where c := VaRα(L). Since the computation of ESα(L) is only based on 100 samples
it is subject to large statistical fluctuations and numerically unstable. This is even
more true for expected shortfall contributions of individual loans. A significantly
higher number of samples has to be computed which makes straightforward MC
simulation impracticable for large credit portfolios.

4.2 Monte Carlo simulation based on importance sampling

Importance sampling is a technique for reducing the variance of MC simulations and
- as a consequence - the number of samples required for stable results. In our setting,
the integral in (18) is replaced by the equivalent integral on the right-hand side of
the equation ∫

L · 1{L>c} dP =
∫
L · 1{L>c} · f dP̄, (19)

where P is continuous with respect to the probability measure P̄ and has density f .
The objective is to choose P̄ in such a way that the variance of the Monte Carlo
estimate for the integral (19) is minimal under P̄. This MC estimate is

ESα(L)ν,P̄ :=
1
ν

ν∑
i=1

LP̄(i) · 1{LP̄(i)>c} · f(i), (20)

where LP̄(i) is a realization of the portfolio loss L under the probability measure P̄
and f(i) is the corresponding value of the density function.
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By the strong law of large numbers and the central limit theorem, ESα(L)ν,P̄
converges to (19) almost surely as ν →∞ and the sampling error converges as

√
ν · (ESα(L)ν,P̄ −

∫
L · 1{L>c} dP) d−→ N(0, σESα(L)(P̄)), (21)

where σ2
ESα(L)(P̄) is the variance of L · 1{L>c} · f under P̄, that is:

σ2
ESα(L)(P̄) =

∫ (
L · 1{L>c} · f

)2
dP̄−

(∫
L · 1{L>c} dP

)2

. (22)

In the following we restrict the set of probability measures P̄, which we consider
to determine a minimum of (22): for every M = (M1, . . . ,Mm) ∈ Rm define the
probability measure PM by7

PM := NM,C ×
n∏
i=1

N0,1, (23)

where NM,C is the m-dimensional normal distribution with mean M and covariance
matrix C. In other words, those probability measures are considered which only
change the mean of the systematic components x1, . . . , xm in the definition of the
Ability-to-Pay variables A1, . . . , An. This choice is motivated by the nature of the
problem. The MC estimate (20) can be improved by increasing the number of
scenarios that lead to high portfolio losses, i.e. portfolio losses above threshold
c. This can be realized by generating a sufficiently large number of defaults in
each sample. Since defaults occur when Ability-to-Pay variables fall below default
thresholds we can enforce a high number of defaults by adding a negative mean to
the systematic components.

Having thus restricted importance sampling to measures of the form (23) we
consider σ2

ESα(L) as a function from Rm to R and rephrase

The Variance Reduction Problem: compute a minimum M = (M1, . . . ,Mm) of
the variance

σ2
ESα(L)(M) =

∫ (
L · 1{L>c} ·

n0,C

nM,C

)2

dPM −
(∫

L · 1{L>c} dP
)2

(24)

in Rm, where n0,C and nM,C denote the probability density functions of N0,C and
NM,C respectively.

We can formulate the minimization condition as

∂Miσ
2
ESα(L)(M) = 0, ∀ i = 1, . . . ,m. (25)

However, for realistic portfolios with thousands of loans this system is analytically
and numerically intractable.

7Note that the initial measure P equals P0.
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4.3 Approximation by a homogeneous portfolio

To progress we therefore approximate the original portfolio P by a homogeneous and
infinitely granular portfolio P̄ as described in Section 2.2. Based on Theorem 1 we
define the function L∞ : R → R by

L∞(x) := n · l ·N
(
N−1(p)− x√

1−R2

)
(26)

and approximate the portfolio loss function L(x1, . . . , xm, z1, . . . , zn) of the original
portfolio P by the loss function

L∞m (x1, . . . , xm) := L∞

 m∑
j=1

ρjxj

 (27)

of the homogeneous and infinitely granular portfolio. The threshold c∞ := VaRα(L∞m )
is defined as the α-quantile of L∞m with respect to the m-dimensional Gaussian mea-
sure N0,C and σ2

ESα(L∞m )(M) denotes the variance of

L∞m · 1{L∞m>c∞} ·
n0,C

nM,C

with respect to NM,C . By approximating the finite inhomogeneous portfolio P by an
infinite homogeneous portfolio we have transformed the variance reduction problem
(24) to

The Variance Reduction Problem for Infinite Homogeneous Portfolios:
compute a minimum M = (M1, . . . ,Mm) of the variance

σ2
ESα(L∞m )(M) =

∫ (
L∞m · 1{L∞m>c∞} ·

n0,C

nM,C

)2

dNM,C−
(∫

L∞m · 1{L∞m>c∞} dN0,C

)2

(28)
in Rm.

Note that we have achieved a significant reduction of complexity: the dimension
of the underlying probability space has been reduced from m+ n to m and the loss
function L∞m is not a large sum but has a concise analytic form. We emphasize,
however, that this approximation technique is only used for determining a mean
vector M for importance sampling. The actual calculations of expected shortfall
and expected shortfall contributions are based on Monte Carlo simulation of the full
portfolio model as specified in Section 2.1.

In the next subsection we will present a simple and efficient algorithm which solves
the variance reduction problem for infinite homogeneous portfolios with arbitrary
precision.
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4.4 Optimal mean for infinite homogeneous portfolios

The computation of the minimum of (28) is done in two steps:

One-factor model: Instead of m systematic factors x1, . . . , xm we consider the
corresponding one-factor model and compute the minimum µ(1) ∈ R of (28) in
the case m = 1. We will show that µ(1) is the minimum of∫ N−1(1−α)

−∞

(L∞1 · n0,1)2

nM,1
dx.

Multi-factor model: The one-dimensional minimum µ(1) can be lifted to the m-
dimensional minimum µ(m) = (µ(m)

1 , . . . , µ
(m)
m ) of (28) by

µ
(m)
i :=

µ(1) ·
∑m

j=1 Cov(xi, xj) · ρj√
R2

. (29)

The one-factor model

If the linear sum
∑m

j=1 ρjxj of the systematic variables in the homogeneous m-factor
model is considered as one systematic factor then the m-factor model is transformed
into a one-factor model with Ability-to-Pay variables

√
R2x+

√
1−R2zi

and analytic approximation of the portfolio loss function

L∞1 (x) := L∞(
√
R2x).

Equation (5) implies that the threshold c∞ = VaRα(L∞m ) equals VaRα(L∞1 ), the
α-quantile of L∞1 with respect to the one-dimensional Gaussian distribution N0,1.
Since L∞1 (x) is monotonous,

{x ∈ R | L∞1 (x) > c∞} = {x ∈ R | x < N−1(1− α)}.

Hence, the variance σ2
ESα(L∞1 )(M) of

L∞1 · 1{L∞1 >c∞} ·
n0,1

nM,1

under NM,1 can be written as

σ2
ESα(L∞1 )(M) =

∫ (L∞1 · 1{L∞1 >c∞} · n0,1)2

nM,1
dx−

(∫
L∞1 · 1{L∞1 >c∞} · n0,1 dx

)2

=
∫ N−1(1−α)

−∞

(L∞1 · n0,1)2

nM,1
dx−

(∫ N−1(1−α)

−∞
L∞1 · n0,1 dx

)2

. (30)

15



Since the second integral in (30) does not depend on M , it suffices to compute a
minimum µ(1) of ∫ N−1(1−α)

−∞

(L∞1 · n0,1)2

nM,1
dx.

This can be easily done by applying numerical techniques.

The multi-factor model

In order to solve the minimization problem (28), µ(1) has to be transformed into an
m-dimensional vector. The following theorem shows that for infinite homogeneous
portfolios the vector µ(m) = (µ(m)

1 , . . . , µ
(m)
m ) computed in (29) is optimal.

Theorem 2 Let µ(1) ∈ R be a minimum of σ2
ESα(L∞1 ) and µ(m) = (µ(m)

1 , . . . , µ
(m)
m )

be defined by (29). Then

σ2
ESα(L∞m )(µ

(m)) = min{σ2
ESα(L∞m )(M) |M ∈ Rm}.

The proof of this theorem is based on the following proposition. It provides a
general technique for reducing the minimization problem for a specific class of multi-
variate integrals to the minimization of one-dimensional integrals. In this proposition
the variance and standard deviation of a random variable U : Rm → R with respect
to N0,C are denoted by σ2(U) and σ(U) respectively. C−1 and CT are the inverse
and transpose of the matrix C.

Proposition 2 Let A : R → R+ be a real-valued, non-negative function and M =
(M1, . . . ,Mm) ∈ Rm. Define µ ∈ R by

µ :=
Cov(U, V )
σ(U)

=
Cov(U, V )√

R2
, (31)

where U : Rm → R and V : Rm → R are the random variables

U(x1, . . . , xm) :=
m∑
j=1

ρj · xj , V (x1, . . . , xm) :=
m∑

i,j=1

xi ·Mj · C−1
ij .

Then∫
A

 m∑
j=1

ρj · xj

 · n0,C(x1, . . . , xm)
nM,C(x1, . . . , xm)

dN0,C ≥
∫
A
(√

R2 · x
)
· n0,1(x)
nµ,1(x)

dN0,1. (32)

Equality holds in (32) if and only if A = 0 a.s. or M and µ satisfy the additional
equation

σ2(V ) = µ2. (33)
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Proof: Since C−1 is symmetric, V 2 can be written in the form

V 2 = (MTC−1x)(xTC−1M)

and therefore

σ2(V ) = MTC−1CC−1M =
m∑

i,j=1

Mi ·Mj · C−1
ij .

Hence,

n0,C(x1, . . . , xm)
nM,C(x1, . . . , xm)

= e(1/2)(
∑m

i,j=1(xi−Mi)(xj−Mj)C
−1
ij −

∑m
i,j=1 xixjC

−1
ij )

= e(1/2)σ
2(V )−V . (34)

Note that

(U(x1, . . . , xm), V (x1, . . . , xm)) and (
√
R2 · x1, µ · x1 +

√
σ2(V )− µ2 · x2)

are both 2-dimensional Gaussian variables with the same joint distribution if consid-
ered as random variables on (Rm, N0,C) and (R2, N0,I) respectively, where I denotes
the identity matrix in R2

2. It follows from (34) and the independence of x1 and x2

on (R2, N0,I) that ∫
A(

m∑
j=1

ρj · xj) ·
n0,C(x1, . . . , xm)
nM,C(x1, . . . , xm)

dN0,C =

∫
A(U(x1, . . . , xm)) · e(1/2)σ2(V )−V (x1,...,xm) dN0,C =∫

A(
√
R2 · x1) · e(1/2)σ

2(V )−(µ·x1+
√
σ2(V )−µ2·x2) dN0,I =

B ·
∫
A(
√
R2 · x) · e(1/2)µ2−µ·x dN0,1 =

B ·
∫
A(
√
R2 · x) · n0,1(x)

nµ,1(x)
dN0,1, (35)

where
B :=

∫
e(1/2)σ2(V )−

√
σ2(V )−µ2·x−(1/2)µ2

dN0,1 = eσ
2(V )−µ2

.

It follows from the Cauchy-Schwarz inequality

Cov(U, V )2 ≤ σ2(U) · σ2(V )
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that µ2 ≤ σ2(V ) and therefore B ≥ 1. Hence,∫
A(

m∑
j=1

ρj · xj) ·
n0,C(x1, . . . , xm)
nM,C(x1, . . . , xm)

dN0,C ≥
∫
A(
√
R2 · x) · n0,1(x)

nµ,1(x)
dN0,1.

Equality holds if and only if A = 0 a.s. or B = 1 which is equivalent to σ2(V ) = µ2.
�

Proof of Theorem 2: Define the real-valued, non-negative function A : R → R+

by
A(x) := (L∞(x) · 1{L∞(x)>c∞})

2.

Note that it follows from (5) and the definition (29) of µ(m) = (µ(m)
1 , . . . , µ

(m)
m ) that

µ(m) and µ(1) satisfy equations (31) and (33). Let M = (M1, . . . ,Mm) ∈ Rm and
define µ ∈ R such that (31) is satisfied. By Proposition 2 and the definition of µ(1),∫ (

L∞m · 1{L∞m>c∞} ·
n0,C

nµ(m),C

)2

dNµ(m),C =
∫
A(

m∑
j=1

ρj · xj) ·
n0,C

nµ(m),C

dN0,C

=
∫
A(
√
R2 · x) · n0,1(x)

nµ(1),1(x)
dN0,1

≤
∫
A(
√
R2 · x) · n0,1(x)

nµ,1(x)
dN0,1

≤
∫
A(

m∑
j=1

ρj · xj) ·
n0,C

nM,C
dN0,C

=
∫ (

L∞m · 1{L∞m>c∞} ·
n0,C

nM,C

)2

dNM,C .

Together with the representation (28) of σ2
ESα(L∞m )(M), this proves the theorem. �

4.5 Numerical analysis

Importance sampling based on the shift vector (µ(m)
1 , . . . , µ

(m)
m ) in (29) minimizes the

Monte Carlo sampling fluctuation for infinitely homogeneous portfolios. We do not
know yet, however, whether this technique leads to a significant error reduction in the
Monte Carlo based estimation of expected shortfall ESα(L) and expected shortfall
contributions ESCα(Li, L) for realistic portfolios. In order to assess its impact on
the portfolio risk measure expected shortfall ESα(L) we apply importance sampling
to a large loan portfolio and calculate the standard deviation of the Monte Carlo
estimator for ESα(L) with α = 99.9%.

The test portfolio consists of 25000 loans with an inhomogeneous exposure and
default probability distribution. The average exposure size is 0.004% of the total
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exposure and the standard deviation of the exposure size is 0.026%. Default prob-
abilities vary between 0.02% and 27%. The portfolio expected loss is 0.72% and
the unexpected loss, i.e. the standard deviation, is 0.87%. Default correlations are
specified by the KMV factor model (see Kealhofer and Bohn (2001) for a description
of the model), comprising 96 systematic country and industry factors. Although the
portfolio is relatively well diversified there are concentrations caused by exposures to
a single sector (geographic region or industry) or to several highly correlated sectors.
Name concentrations do not play a dominant role. The test portfolio is a typical
example of a large credit portfolio in an international bank. We expect that the
variance reductions reported in this paper can be reproduced with any portfolio of
similar characteristics.

In Figure 1 we plot the standard deviation of the Monte Carlo estimator for
ES0.999(L) as a function of the norm of the vector (µ(m)

1 , . . . , µ
(m)
m ). A scaling factor

of 0 corresponds to no importance sampling, whereas a scaling factor of 1 corresponds
to (µ(m)

1 , . . . , µ
(m)
m ). The other points represent vectors with identical direction but

a linearly interpolated/extrapolated norm, i.e. 0.5 corresponds to the vector 0.5 ·
(µ(m)

1 , . . . , µ
(m)
m ). These results were obtained from a sample of 40 independent Monte

Carlo runs of 10000 simulation trials for each scaling factor. On the right-hand axis
we plot the average result from the 40 runs with the standard deviation in error bars.
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Figure 1: Monte Carlo sampling error as a function of the importance sampling shift.

From these results we draw two conclusions. First we have demonstrated that
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importance sampling can significantly improve the quality of the Monte Carlo es-
timate of the expected shortfall measure. The variance ratio between the optimal
point in the graph and the no-shift case is 400, i.e. the same precision without any
importance sampling would require 400 times more simulations. Improvements of a
comparable magnitude were found for the Monte Carlo estimate of the quantile of
the loss distribution, i.e. the value-at-risk.

Secondly, we observe that our theoretical optimal shift size slightly overestimates
the empirical optimal shift. Our explanation for this is that in our determination of
the equivalent homogeneous portfolio we have overestimated the average correlation
R2. This has been confirmed by the observation that the R2 determined from fitting
a Vasicek distribution to our best Monte Carlo estimate for the 99.9% quantile is ap-
proximately 10% smaller than the one calculated from the approximation procedure
in Section 2.2.

Compared to the risk measure expected shortfall, the calculation of numerically
stable expected shortfall contributions of individual loans is an even more challenging
task. Importance sampling on systematic factors also leads to a significant reduction
in the volatility of the ESCα(Li, L): in the test calculations in Section 6, the variance
is reduced by a factor of more than 100 (see Table 2), for 75% of the loans the
standard deviation is below 5% if 100000 simulations are calculated (see Figure 3).
However, for a number of transactions in the test portfolio the statistical fluctuations
of their expected shortfall contributions are still unacceptably high. In the following
section we obtain further improvements by utilizing the independence of the loan loss
variables L1, . . . , Ln conditional on given values χ = (χ1, . . . , χm) of the systematic
variables x = (x1, . . . , xm).

5 Variance reduction based on conditional independence
of specific factors

There exist several options how to exploit conditional independence for stabilizing
expected shortfall contributions. In this section, we deal with three different tech-
niques:

1. importance sampling of specific factors based on exponential twisting of default
probabilities,

2. deterministic calculation of the expected shortfall contribution of the i-th loan
in scenarios where values of all systematic factors and all but the i-th specific
factor have been simulated and

3. analytic approximations of conditional loss distributions motivated by the ap-
plication of the central limit theorem.

Numerical results and comparisons are presented in Section 6.
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5.1 Importance sampling on specific factors

Conditional on {x = χ}, Glasserman and Li (2005) and Merino and Nyfeler (2004)
suggest importance sampling based on exponential twists of default probabilities to
stabilize expected shortfall. More precisely, they consider the related problem of
improving the MC estimate of the tail probability P (L > c).

It is intuitively clear that better estimates of P (L > c) can be obtained by
increasing the conditional default probabilities of the individual loans, i.e by replacing
each conditional default probability

pi(χ) = N

N−1(pi)−
∑m

j=1 φijχj√
1−R2

i

 , i = 1, . . . , n, (36)

by a higher default probability p̄i(χ). Glasserman and Li (2005) prove asymptotic
optimality for the exponential twist

p̄i(χ) :=
pi(χ)eθc(χ) li

1 + pi(χ)(eθc(χ) li − 1)
, (37)

where θc(χ) denotes the saddle-point defined in Section 2.2.2. Hence, the basic
importance sampling identity becomes

P (L > c) = Ep̄

(
1{L>c}

n∏
i=1

(
pi(χ)
p̄i(χ)

)Ai(χ,zi)(1− pi(χ)
1− p̄i(χ)

)1−Ai(χ,zi)
)
,

where Ep̄ denotes the expectation using the new default probabilities p̄1(χ), . . . , p̄n(χ)
and Ai(χ, zi) is the i-th Ability-to-Pay variable restricted to {x = χ}.8

It is straightforward to combine the importance sampling techniques on system-
atic and specific factors:

1. Apply importance sampling to the systematic factors x1, . . . , xm and compute
samples

χ1 = (χ11, . . . , χ1m), . . . , χk = (χk1, . . . , χkm).

2. For each of the k systematic samples χj = (χj1, . . . , χjm): calculate l IS samples
of the specific factors z1, . . . , zn using the default probabilities p̄i(χj) in (37).

The relative importance of both IS techniques depends on the characteristics of the
portfolio, in particular on the degree of correlation (Glasserman and Li, 2005). In
our setting, the variance reduction on the systematic factors clearly dominates for
the 25000 loan portfolio defined in Section 4.5. Numerical results are presented in
Section 6.

8In Glasserman (2005), exponential twisting is used to derive an asymptotic approximation to
conditional default probabilities.
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5.2 Conditional expected shortfall allocation

The variance reduction technique presented in this subsection can be combined with
importance sampling on systematic and specific factors. It utilizes the simple form
of E(Li |L > c), i = 1, . . . , n, conditional on given values of the systematic variables
x1, . . . , xm and the remaining specific variables z1, . . . , zi−1, zi+1 . . . , zn (compare to
Merino and Nyfeler (2004)).

Let (χ, σ) = (χ1, . . . , χm, σ1, . . . , σn) ∈ Rm+n, i ∈ {1, . . . , n}. Our objective is to
calculate E(Li |L > c) on Ωi(χ, σ), where Ωi(χ, σ) denotes the subset

{x1 = χ1, . . . , xm = χm, z1 = σ1, . . . , zi−1 = σi−1, zi+1 = σi+1, . . . , zn = σn}

of Rm+n.
Since

∑
j 6=i Lj is deterministic on Ωi(χ, σ) we distinguish three cases:∑

j 6=i
Lj > c : E(Li1{L>c} |Ωi(χ, σ)) = pi(χ)li, P(L > c |Ωi(χ, σ)) = 1,

c ≥
∑
j 6=i

Lj > c− li : E(Li1{L>c} |Ωi(χ, σ)) = pi(χ)li, P(L > c |Ωi(χ, σ)) = pi(χ),

c− li ≥
∑
j 6=i

Lj : E(Li1{L>c} |Ωi(χ, σ)) = 0, P(L > c|Ωi(χ, σ)) = 0,

where the conditional default probability pi(χ) of the i-th loan on Ωi(χ, σ) is specified
in (36).

These simple formulae can be combined with importance sampling in order to
improve the stability of expected shortfall allocation. Let

(χj , σj) = (χj1, . . . , χjm, σj1, . . . , σjn), j = 1, . . . , k

be k samples of the systematic factors x1, . . . , xm and the specific factors z1, . . . , zn
and denote the probabilities of the samples by q(χ1, σ1), . . . , q(χk, σk). The expected
shortfall contribution of the i-th loan equals

E(Li |L > c) =
E(Li1{L>c})

P(L > c)

≈
∑k

j=1 q(χj , σj) · E(Li1{L>c} |Ωi(χj , σj))∑k
j=1 q(χj , σj) · P(L > c |Ωi(χj , σj))

, (38)

where (38) can be easily obtained from the above formulae.
The variance reduction in (38) is due to the fact that the simulation of the i-th

specific factor has been replaced by a deterministic calculation of E(Li |L > c) in
each scenario Ωi(χj , σj). This simple technique is easy to implement and does not
require much additional computing time. The variance reduction obtained in our test
portfolio is significant, particularly in combination with importance sampling on the
systematic factors (see Section 6). Furthermore, this technique can be generalized
to migration mode in a straightforward way (Section 7).
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5.3 Normal approximations

5.3.1 Calculation of expected shortfall for Gaussian distributions

Conditional on a systematic scenario {x = χ}, the volatility of the expected shortfall
estimates E(Li |L > c) can be completely eliminated if the conditional portfolio
loss is not simulated but approximated by an analytic distribution. The analytic
approximation of the portfolio loss L in Theorem 1 has been obtained by applying
the law of large numbers to the sum of the independent loss variables conditional
on x = χ. A more precise approximation of L is based on the central limit theorem:
approximate L =

∑n
i=1 Li on {x = χ} by a normal distribution L(χ) with mean and

variance

µ(χ) :=
n∑
i=1

li · pi(χ), σ2(χ) :=
n∑
i=1

l2i · pi(χ) · (1− pi(χ)). (39)

We will now apply this technique to obtain an approximation of E(Li 1{L>c})
in a systematic scenario {x = χ}. Firstly, {x = χ} is split into two components:
{x = χ}∩{Ai ≤ Di} and {x = χ}∩{Ai > Di}. By the central limit theorem, L can
be approximated by a normal distribution Li(χ) on {x = χ}∩{Ai ≤ Di}, where the
mean and variance of Li(χ) are adjusted to

µi(χ) :=
n∑

j=1, j 6=i
lj · pj(χ) + li, σ2

i (χ) =
n∑

j=1, j 6=i
l2j · pj(χ) · (1− pj(χ)).

Hence, on {x = χ} ∩ {Ai ≤ Di},

P(L > c | {x = χ} ∩ {Ai ≤ Di}) ≈ P(Li(χ) > c | {x = χ} ∩ {Ai ≤ Di})
= 1−Nµi(χ),σ2

i (χ)(c). (40)

Since Li = 0 on {Ai > Di} and Li = li on {Ai ≤ Di}, the following approximation
of expected shortfall contributions on {x = χ} is derived from (40):

E(Li 1{L>c} | {x = χ}) ≈ pi(χ) · E(Li 1{Li(χ)>c} | {x = χ} ∩ {Ai ≤ Di})

= pi(χ) · li ·
(
1−Nµi(χ),σ2

i (χ)(c)
)
. (41)

5.3.2 Combining importance sampling and analytic approximations

The following algorithm calculates expected shortfall contributions for a given confi-
dence level α ∈ (0, 1). It uses importance sampling for the simulation of the system-
atic factors and applies normal approximations to the conditional loss distributions.

Algorithm:
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1. Importance sampling on systematic factors:

Compute k samples

χ1 = (χ11, . . . , χ1m), . . . , χk = (χk1, . . . , χkm)

of the systematic factors x1, . . . , xm using the importance sampling technique
presented in Section 4. Denote the probabilities of the samples by q(χ1), . . . , q(χk).

2. Normal approximations of conditional distributions:

For each j ∈ {1, . . . , k}: compute the mean µ(χj) and the variance σ2(χj) of
the normal approximation L(χj) on {x = χj} (according to definition (39)).
These normal distributions define a loss distribution on the space

k⋃
j=1

{x = χj}

which approximates the portfolio loss distribution L.

3. Approximation of c = VaRα(L):

An estimate of c = VaRα(L) can be backed out of the estimation

α ≈
k∑
j=1

q(χj) Nµ(χj),σ2(χj)(c).

4. Calculation of the expected shortfall contributions:

For each i ∈ {1, . . . , n}, the expected shortfall contribution ESCα(Li, L) is now
approximated by

ESCα(Li, L) ≈
∑k

j=1 q(χj) E(Li 1{L>c} | {x = χj})
1− α

,

where E(Li 1{L>c} | {x = χj}) is calculated by (41), i.e. it is derived from the
normal approximation Li(χj) on {x = χj} ∩ {Ai ≤ Di}.

Analytic approximations inevitably introduce errors into the calculation of the
capital estimates. The accuracy of the portfolio approximation and the estimates
for ESCα(Li, L) clearly depends on the characteristics of the portfolio, in particu-
lar the homogeneity of the exposures. Since the typical credit portfolio of a large
international bank is rather well-diversified we experienced relatively small errors
in the calculation of ESCα(Li, L) (see Tables 1 and 2 in Section 6). However, it is
certainly a worthwhile topic for future research to develop analytic approximation
techniques that are applicable to large credit portfolios and provide a better fit to
the conditional distribution of L in a systematic scenario as well as efficient formulae
for the calculation of ES contributions.
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6 Numerical results

We now apply the different variance reduction techniques presented in this paper to
the test portfolio specified in Section 4.5, as well as to a smaller portfolio of 1000
loans. The objective is to compare these techniques in terms of the numerical stabil-
ity and accuracy of the results that they produce, and hence assess their suitability
for allocating economic capital to individual transactions.

A common feature of the analyzed algorithms is the split of the calculation of
expected shortfall contributions into two steps:

1. simulation of systematic factors,

2. calculation of expected shortfall contributions by utilizing the independence of
loss variables in each systematic scenario.

The simulation of the systematic factors is either based on straightforward Monte
Carlo simulation (MC) or on the importance sampling technique (IS) developed in
Section 4. In each systematic scenario, the following techniques, presented in Section
5, are applied to the specific factors:

1. straightforward Monte Carlo simulation (MC),

2. Monte Carlo simulation with importance sampling based on exponential twist-
ing (IS),

3. Monte Carlo simulation with the conditional allocation (CA),

4. approximation of the conditional loss distribution by a normal distribution, i.e.
application of the central limit theorem (NA).

The calculations are based on 20 runs with 100000 MC samples, i.e. 100000 simula-
tions of the systematic factors and one simulation of all specific factors (or a normal
approximation of the conditional loss distribution) in each systematic scenario. In
order to assess the accuracy of the different techniques we compare the average ES
contribution (calculated as the mean of 20 estimates) of a loan to a benchmark. The
benchmark value is based on the average of 28 runs, where each run uses 1000000
simulations with importance sampling on the systematic factors and straightforward
MC simulation on the specific factors.

Firstly we analyze the different methods as applied to the 25000 loan portfolio
used previously. For each loan, the difference between its average ES contribution
and the benchmark is calculated and expressed in % of benchmark value. In Table
1, the mean of these 25000 relative differences is exhibited for the 8 calculation
methods.

Next, we calculate the standard deviation of the simulated ES contributions.
More precisely, for each loan the standard deviation of the 20 estimates of its ES
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% Diff Specific Factors
MC IS CA NA

Systematic Factors MC 9.8 9.0 2.6 2.4
IS 0.8 0.7 0.1 1.7

Table 1: Average relative error in 25000 loan portfolio.

contributions is calculated. The second table shows the average standard deviation
again expressed in % of benchmark value.

% StDev Specific Factors
MC IS CA NA

Systematic Factors MC 56.6 53.9 12.3 6.1
IS 4.6 3.7 0.9 0.5

Table 2: Average standard deviation in 25000 loan portfolio.

A comparison of the different variance reduction techniques shows that the impact
of IS on systematic factors is most significant. This is due to the characteristics of
the portfolio: our test portfolio is large and granular, i.e. it is not dominated by
individual names. As a consequence, the homogeneous portfolio approximation used
in Section 4.3 as basis for IS on systematic factors, provides a good representation.
Although the portfolio is relatively well diversified there are concentrations caused
by exposures to a single sector (geographic region or industry) or to several highly
correlated sectors. These concentrations are exploited by importance sampling on
systematic factors.

Because of the portfolio characteristics it is not surprising that combining IS
on systematic factors with IS on specific factors only provides a small additional
reduction of the variance: the portfolio loss depends on concentration risks rather
than on the behaviour of individual loans, and the exponential twist does not have
the granularity to closely fit the requirements of such a large number of diverse loans.

We have observed a better performance of importance sampling on specific fac-
tors for smaller portfolios with low dependence on systematic factors (compare to
Glasserman and Li (2005)). As an example, we analyse the stability and accuracy
of the results on a smaller portfolio, made up of 1000 loans of our original portfolio.
Then importance sampling applied to the specific factors improves the stability and
accuracy of results more than that applied to the systematic factors. Indeed, as we
move to the smaller 1000 loan portfolio, the influence of the systematic factors on
portfolio loss diminishes whilst that of the specific factors increases. Furthermore,
the homogenous portfolio gives a less accurate representation of the smaller portfolio,
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and the exponential twist is able to fit more closely to an optimal solution for 1000
loans rather than 25000 (see Tables 3 and 4).

% Diff Specific Factors
MC IS CA NA

Systematic Factors MC 13.2 5.2 4.0 75.1
IS 5.6 1.9 2.1 79.4

Table 3: Average relative error in 1000 loan portfolio.

% StDev Specific Factors
MC IS CA NA

Systematic Factors MC 75.6 26.3 17.9 20.3
IS 29.3 3.8 8.4 0.7

Table 4: Average standard deviation in 1000 loan portfolio.

An additional problem of the calculation of exponentially twisted default proba-
bilities is the long computing time if this technique is applied in a large number of
systematic scenarios. We have therefore repeated the calculation with only 10000
systematic scenarios but 10 specific scenarios for each systematic sample: as ex-
pected, the computing time is reduced but the volatility of the expected shortfall
contributions is higher than in the original setup.

Turning now to the other methods of calculation, the combination of importance
sampling on systematic factors with normal approximations of conditional loss dis-
tributions is the most stable method. This is not surprising because the simulation
of the specific factors is replaced by a purely deterministic technique. The main
disadvantage of the normally distributed approximations is the deviation of the es-
timates from the correct expected shortfall contributions. Even for the large 25000
loan portfolio these differences are relevant if expected shortfall allocation is calcu-
lated at high quantiles like the 99.9% quantile used in this analysis. Furthermore,
the smaller the portfolio, the more inaccurate is the normal approximation of the
conditional loss distributions, so that the results observed on the 1000 loan portfolio
disqualify the method altogether.

Despite its simplicity the conditional allocation performed well in our analysis
on the large and acceptably on the small portfolios: if combined with IS on system-
atic factors the difference to the benchmark is 0.1% on average and the standard
deviation is 0.9% on the 25000 loan portfolio, and 2.1% and 8.4% on the 1000 loan
portfolio. Whilst other methods are tied to the portfolio size, with importance sam-
pling on systematic factors and the normal approximation being more suited to large
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portfolios, and importance sampling on the specific factors more suited to small, the
relative improvement to the stability and accuracy of results under the conditional
method remains good irrespective of portfolio size.

Tables 1 and 2 provide information on the average error and the average volatility
of the MC estimates in the 25000 loan portfolio. A more detailed analysis of the
estimated ES contributions for individual loans can be found in Figures 2 and 3. For
each of the 25000 loans we have estimated

1. the relative difference between its average ES contribution and the benchmark,

2. the standard deviation of its ES contributions

from 20 independent runs of 100000 simulation trials

1. with straightforward Monte Carlo simulation (MC),

2. with importance sampling on the systematic factors (IS),

3. with importance sampling on the systematic factors and conditional allocation
(IS+ Cond).

On the horizontal axis in Figure 2 we divide the relative difference to the benchmark
in bins and on the vertical axis we display the number of loans in each bin. Note
that the bins on the horizontal axis are not of equal size.

In Figure 3, the standard deviations of the 25000 ES contributions are displayed
in the same way.

The improvements obtained by using importance sampling on systematic factors
and conditional allocation are significant: the standard deviation is less than 1% for
70% of the loans, more than 99% have a standard deviation below 4%. It would
require 4000 ≈ (56.6%/0.9%)2 times more simulations to achieve a similar precision
with straightforward Monte Carlo simulation. Another advantage of this variance
reduction technique is that it can be easily generalized to multi-state models. This
extension will be discussed in the next section.

Using IS on systematic factors and conditional allocation increases the computing
time compared to straightforward Monte Carlo simulation. However, the increase is
rather modest compared to the variance reduction achieved: in our implementation
we observed a factor of 2.

We conclude that IS on systematic factors together with conditional allocation is
a very efficient technique for stabilizing ES contributions in large portfolios such as
those used to model the credit risk of a financial institution. For smaller portfolios,
a combination of IS on systematic and specific factors (potentially in conjunction
with conditional allocation) seems to be more suitable.
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Figure 2: Distribution of the relative difference of ES contributions to the benchmark.

Stability of ES Contributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 20 30 40 50 >50
Standard Deviation

Pe
rc

en
ta

ge
 o

f T
ra

ns
ac

tio
ns

MC
IS
IS + Cond

Figure 3: Distribution of statistical fluctuation of ES contributions.

7 Generalization to multi-state models

The portfolio model defined in Section 2.1 only distinguishes between two states at
horizon: default and non-default. The objective of this section is the introduction
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of rating migration and the generalization of importance sampling on systematic
factors and conditional allocation to the multi-state rating model.

7.1 Rating migration

Let r be the number of rating classes including default and define thresholds

−∞ = D
(0)
i ≤ D

(1)
i ≤ . . . ≤ D

(r−1)
i ≤ D

(r)
i = ∞, i = 1, . . . , n

for each of the n loans. The event {D(k−1)
i < Ai ≤ D

(k)
i } is interpreted as the i-th

loan is in rating class k at horizon. The migration probabilities p(k)
i := P({D(k−1)

i <

Ai ≤ D
(k)
i }) and migration thresholds D(k)

i are usually derived from a rating migra-
tion matrix. Note that the default probability pi equals p(1)

i = P({Ai ≤ D
(1)
i }).

The loss l(k)i of the i-th loan in migration class k is specified by a vector

(l(1)
i , . . . , l

(r)
i ) ∈ Rr with l(1)i ≥ . . . ≥ l

(r)
i .

The loan loss Li : Rm+1 → R is generalized to

Li :=
r∑

k=1

l
(k)
i · 1{D(k−1)

i <Ai≤D
(k)
i }.

7.2 Importance sampling in a multi-state model

The first step in adapting importance sampling to the multi-state model is the con-
struction of a homogeneous portfolio. The definitions of the homogeneous loss vector
(l(1), . . . , l(r)) and the homogeneous migration probabilities p(1), . . . , p(r) generalize
(3):

l(k) :=
∑n

i=1 l
(k)
i

n
, p(k) :=

∑n
i=1 p

(k)
i l

(1)
i∑n

i=1 l
(1)
i

, k = 1, . . . , r.

In line with the two-state model, the positive weights g1, . . . , gn ∈ R are given by
gi := E(Li) =

∑r
k=1 p

(k)
i l

(k)
i and the homogeneous weight vector ρ = (ρ1, . . . , ρm)

and the homogeneous R2 are defined by (4), (5) and (6).
In the second step, the computation of the optimal drift vector µ(m) is modified.

As in the two-state model, µ(m) is derived from the minimum µ(1) of∫ N−1(1−α)

−∞

(L∞1 · n0,1)2

nM,1
dx.

However, a straightforward generalization of Theorem 1 shows that L∞1 has a more
complex form in the multi-state model: L∞1 (x) equals

n ·
r∑

k=1

l(k) ·

(
N

(
N−1(

∑k
j=1 p

(j))−
√
R2x

√
1−R2

)
−N

(
N−1(

∑k−1
j=1 p

(j))−
√
R2x

√
1−R2

))
.
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Analogously to the two-state model, the application of formula (29) lifts the one-
dimensional minimum µ(1) to the m-dimensional vector µ(m) = (µ(m)

1 , . . . , µ
(m)
m ), i.e.

µ
(m)
i :=

µ(1) ·
∑m

j=1 Cov(xi, xj) · ρj√
R2

,

that specifies the shifted mean of the systematic factors used in the importance
sampling algorithm.

7.3 Conditional allocation in a multi-state model

The conditional expected shortfall allocation can be easily generalized to the rating
migration model. As in Section 5, Ωi(χ, σ) denotes the set

{x1 = χ1, . . . , xm = χm, z1 = σ1, . . . , zi−1 = σi−1, zi+1 = σi+1, . . . , zn = σn}

for i ∈ {1, . . . , n} and (χ, σ) = (χ1, . . . , χm, σ1, . . . , σn) ∈ Rm+n. The conditional
migration probabilities of the i-th loan on Ωi(χ, σ) equal

p
(k)
i (χ) = N

D(k)
i −

∑m
j=1 φijχj√

1−R2
i

−N

D(k−1)
i −

∑m
j=1 φijχj√

1−R2
i

 k = 1, . . . , r.

Since
∑

j 6=i Lj is deterministic on Ωi(χ, σ), we define

Ki :=

{
max{k ∈ {1, . . . , r} |

∑
j 6=i Lj > c− l

(k)
i } if

∑
j 6=i Lj > c− l

(1)
i on Ωi(χ, σ),

0 if
∑

j 6=i Lj ≤ c− l
(1)
i on Ωi(χ, σ)

and obtain

E(Li1{L>c} |Ωi(χ, σ)) =
Ki∑
k=1

p
(k)
i (χ) · li, P(L > c |Ωi(χ, σ)) =

Ki∑
k=1

p
(k)
i (χ). (42)

Importance sampling on systematic factors and conditional allocation on specific
factors are combined in the multi-factor model analogously to the two-state mode.
Using the generalized formulae (42), the calculation of E(Li |L > c) immediately
follows from (38).

8 Conclusion

In the framework of a standard structural credit portfolio model, we investigated the
numerical estimation of capital allocation according to expected shortfall. As it is
a coherent measure of risk and has a particularly intuitive interpretation, expected
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shortfall has long been viewed as a desirable basis for capital allocation. Its estima-
tion however has proved to be almost intractable for large credit portfolios due to
expected shortfall’s focus on the extreme tail of the loss distribution.

We examined several variance reduction techniques for the Monte Carlo based es-
timation of expected shortfall contributions in large loan portfolios. Firstly, we gave
a detailed presentation of an importance sampling technique developed at Deutsche
Bank. It applies to the systematic factors of the portfolio model and is based on the
infinite granularity approximation of the portfolio loss distribution. This method
was used in conjunction with three further variance reduction techniques that utilize
the independence of the specific factors of the model: importance sampling based
on exponential twisting of conditional default probabilities, normal approximation of
the portfolio loss distribution in a given systematic scenario, and the semi-analytical
conditional approach.

We compared the performance of these methods in terms of the accuracy and
Monte Carlo stability of their results by testing them on a large portfolio of 25000
loans as well as on a smaller portfolio of 1000 loans. We found that the combination
of importance sampling techniques on systematic and specific factors performed well
on the 1000 loan portfolio. Importance sampling on systematic factors in conjunc-
tion with conditional allocation proved to be an efficient technique for stabilizing
expected shortfall allocation in larger credit portfolios: applied to our test portfo-
lio of 25000 loans it reduces the variance of the Monte Carlo estimate of expected
shortfall contributions of individual loans - and therefore the number of required
simulations - by a factor of 4000. Additionally, this approach is not computation-
ally demanding, and its simplicity makes it open to methodological extensions. The
generalization to multi-state models given in this paper is particularly important for
practical applications. In summary, our results show that the inherent numerical
problems of expected shortfall allocation in structural credit portfolio models can be
overcome and, as a consequence, economic capital allocation according to expected
shortfall is a viable option for financial institutions.
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